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Observations of galaxy-galaxy and cluster-cluster correlations as well as other large-scale 
structure can be fit with a "limited" fractal with dimension D = 1.2. This is not a "pure" fractal 
out to the horizon: the distribution shifts from power law to random behavior at some large 
scale. If the observed patterns and structures are formed through an aggregation growth 
process, the fractal dimension D can serve as an interesting constraint on the properties 
of the stochastic motion responsible for limiting the fractal structure. In particular, it is found 
that the observed fractal should have grown from two-dimensional sheetlike objects such 
as pancakes, domain walls, or string wakes. This result is generic and does not depend 
on the details of the growth process. 

T h e  origin of cosmological large-scale 
structure is probably the most pressing prob- 
lem in physical cosmology today. Under- 
standine the observed structure reauires the - 
use of quantitative methods to describe it. 
The measurement of the two-point galaxy- 
galaxy correlation function, that is, kg, = 
(r)-I.', for separations r up to -10 Mpc, 
marked the beginning of quantitative at- 
tempts to understand the large-scale struc- 
ture of the universe (1 ). The two-voint 

\ ,  

correlation function for clusters of galaxies 
appears to have similar behavior, but with 
higher amplitude (2, 3). Initial worries 
about projection effects biasing the results 
have been minimized somewhat by the 
result of West and Van den Bergh (4) for 
cD galaxies (cD's are associated with the 
core of rich clusters) and that of Lahav et al. 
(5) for x-ray clusters; these show the same 
behavior as the clusters. Several years ago, 
Szalay and Schramm (6) showed that the 
correlation functions could be written in a 
unified way by using a dimensionless variable 
rL,  where L is the average separation of 
objects in the catalog being examined: .$(r) 
= P (L) (rL) - I.'. They found the correlation 
amulitude B (= 0.35) is a constant for all . . 
clusters of galaxies and is unity for galaxies. 
The slightly larger correlation for the galax- 
ies in this scale-free approach is probably an 
indication of gravitational clustering. 

The near constant behavior of P for 
clusters indicates that the clustering process 
mav be rouehlv scale invariant or. in other - ,  
woids, that the structure is a fractal. But it 
is not a true fractal because it does not show 
power law behavior to infinite scale. State- 
ments about a so-called "fractal universe" 
are therefore excessive. At scales > 100 
Mpc, the data are sufficiently poor that the 
power law correlation is not evident, and at 
very large scales we know that the universe 
is isotrouic and not fractal from microwave 
observations and the relatively smooth dis- 

tribution of objects on large scales (7). 
Thus, at best, the fractal is a limited fractal. 

It is interesting that as the sampling of 
the universe gets larger and deeper, more 
observations appear to continue to support 
this limited-fractal hypothesis. As was 
shown in Bahcall and Chokshi [in (9)], Fig. 
1 shows a summarv of the current situation 
and our error bar estimates, with data 
points for correlation of superclusters (8), 
quasars (9), x-ray clusters (5), and the cD's 
at the center of superclusters (4), as well as 
recent work by Efstathiou [in ( lo)]  with the 
Automated Plate Measuring (APM) survey 
that has supported this basic clustering be- 
havior. For 10 5 L 5 100 Mpclh, P(L) is 
nearly constant; the current best fit value is 
p = 0.26. Note that a power law correla- 
tion function with index 1.8 corresponds in 
three-dimensional (3-D) space to a fractal 
with D = 1.2. 

The following questions arise when we 

Fig. 1. The two-point correlation function can 
be expressed in the scale-invariant form: c(r) = 

p(r1L)-' where L = nr1l3 is the mean distance 
between objects in a catalog, n is the mean 
density, and p is the dimensionless correlation 
amplitude. The best fit (broken line) to the 
updated observational data gives p = 0.26. 
The error bars represent +50% uncertainty in 
the density, +50% uncertainty in the correlation 
amplitude, and *20% uncertaintv in determin- 
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discuss the possible fractal structures in the 
universe: How far out does the fractal corre- 
lation extend! What can we learn from the 
fractal dimension D = 1.2? What physical 
process can give rise to a fractal structure in 
the distribution of observable obiects! At 
present these questions have ambiguous an- 
swers. Most researchers of fractal large-scale 
cosmological structure have either tried to 
assume a pure fractal structure (1 1, 12) or to 
emphasize how a pure fractal cannot explain 
the structure of the universe because of the 
isotropy of microwave radiation and the 
relatively uniform distribution of objects at 
large distances (7). A point that can be lost 
in such arguments is that if the universe is 
fractal-like for some range of scale, then 
some insight might be gained by looking at 
how such fractals can develop, even though 
the fractal is eventuallv truncated. 

If the fractal behavior is real, gravity 
alone cannot be used to exvlain it because 
the clustering amplitude of clusters would 
then not be higher than that of galaxies. 
Although some form of biasing (13) may be 
useful here, we instead see if accepting the 
fractal interpretation offers any useful in- 
sights. In particular, let us assume that some 
sort of fractal seed or growth process provides 
the fractal correlation while gravity enhanc- 
es correlation amulitude on small scales. We 
find that applying fractal analysis techniques 
to large-scale matter distribution in the uni- 
verse yields some interesting results. 

There are two basic requirements to form 
large-scale structure: (i) primordial seeds or 
fluctuations (density perturbations) and (ii) 
the aggregation of matter to the seed 
(growth process). The correlation of seeds or 
density perturbations and the scaling behav- 
ior of growth processes are all responsible for 
anv fractal structure we observe todav. and it , , 
is interesting to find that most structure 
formation theories can be fitted in the cate- 
gory of emphasizing one or the other. 

In a continuous clustering model (14)- 
for example, the variant of Mandelbrot 
(1 l ) ,  in which galaxies are placed on each 
step of a Levy flight (I 1)-the correlation 
between seeds is fully responsible for the 
fractal distribution of observed obiects. The 
model is simple and successful in reproduc- 
ing the observed correlation functions. For 
the Mandelbrot model the fractal dimen- 
sion D enters the program through the 
ansatz of the probability distribution of 
Levy flight: for a random walk with step size 
1,P(1) =Ofor1 < l , ; andP( l )  = ~ l ; / l ~ + '  
for 1 > 1 ,. Thus the model is more an 
empirical computational device than a true 
physically motivated growth process. It also 
has the problem of no natural truncation of 
the fractal at large scales. On the other 
hand, in the random Gaussian fluctuation 
model (1 5),  the seeds are randomly distrib- 
uted in a Gaussian manner. If the ampli- 
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tude of the fluctuations is scale invariant, 
the model is able to re~roduce the two- 
point correlation on a small scale (510 
Mpc). When the scale gets larger, some 
problems appear, as illustrated by the excess 
power observed on larger scales relative to 
the falloff in the model (10). (If biasing is 
invoked to fit the cluster correlations from 
the galaxy correlations, then the cluster 
correlation function is directly proportional 
to the galaxy correlation function. If the 
galaxy function should unambiguously be 
negative, then so should the cluster func- 
tion on that scale. As of this time, the data 
are too ambiguous for this test to be made.) 

Numerical modeling with N-body simu- 
lations has become the prime tool used in 
cosmology for exploring the aggregation of 
matter to seeds beyond linear gravitational 
perturbation theory [see (16)l. In general, 
matter undergoes a stochastic motion in 
space until it is gravitationally bound by 
seeds to form clumps, and the growth rate 
of the c l u m ~  is controlled bv the diffusing 
flux of matter onto the seed.' The underl; 
ing physics of this kind of growth process 
can be modeled by DLA (diffusion-limited 
aggregation), and studies with the model 
show that the resulting aggregate has a 
well-defined scaling behavior (1 7). 

In particular, the two assumptions used 
by Ball and Witten (18) in deriving their 
causality limits are that the aggregate grows 
by absorbing particles doing a random walk 
and that the aggregate is limited by diffu- 
sion. Both of these assumptions seem well 
justified in the cosmological case. In the 
growth of a traditional DLA fractal, the 
interaction of the diffusing particles with 
the aggregate is short ranged, and the ag- 
gregate does not grow until the diffusing 
particles are attached, so the aggregate is 
connected. In the cosmological case, be- 
cause gravity is long ranged, the star cluster 
is more loosely bound. In this report we do 
not go into the details of a particular growth 
model but rather show that based on the 
growth process, the fractal dimension D can 
serve as an interesting constraint on the u 

growth space, which is defined as the possi- 
ble traiectories of the stochastic motion of 
matter clumps. The overall space is 3-D, but 
the stochastic motion is not necessarily 3-D. 

The aggregate grows by absorbing parti- 
cles that are randomly moving in d-dimen- 
sional growth space and the outer radius R 
of the aggregate grows with time, but dRldt 
is limited by some value u, which is propor- 
tional to the density u of moving particles, 
because of the "shadow" effect. in which 
parts of a cluster begin to block the interior 
sites. In our case. the "shadow" effect also 
occurs for a different reason-when the 
material is used up, the sites adjacent to the 
"void" cannot grow. So, dRldt < u = u. 
The quantity dRldt is related to the change 

of mass M (= R ~ )  of the aggregate by dRldt 
= (dMldt)l(dMldR). The quantity dMldt is 
also the rate at which the diffusing particles 
are first bounded by the aggregate: 

thus 

This is Ball and Witten's causality bound 
(18) on the fractal grown from a diffusion- 
limited process. The observed fractal di- 
mension D = 1.2 implies that the dimen- 
sion d of the growth space is less than 2.2. 
In other words, the growth space should 
involve a two-dimensional sheetlike obiect. 
This fact can constrain the properties of 
topological defects that might serve as seeds 
for large-scale structure. This result favors 
light domain walls (19), wakes of string 
(20), superconducting strings (the explo- 
sive model) (2 l ) ,  the pancake model (22), 
or collapsing textures (23). (Of course it 
says nothing about other problems these 
models mav have. such as the microwave 
background yparameter constraint on the 
explosive models, and so on.) 

One consequence of embedding a fractal 
structure generation mechanism into the well- 
established big bang framework (7) is the 
prediction that the fractal correlation should 
break down at some scale. As pointed out by 
Peebles (I), a pure fractal contradicts the 
observed large-scale angular correlation func- 
tion. It also has problems with microwave 
background isotropy. Because the growth pro- 
cess is limited by the diffusion of particles onto 
the aggregate, it can drop below the expan- 
sion rate of the universe. Furthermore, when 
the random motion of the matter is not 
constrained, the growth will be 3-D. From Eq. 
4 we know that it is impossible to grow a D = 
1.2 pure fractal in three dimensions with any 
kinematic growth process. 

The breakdown scale of the fractal corre- 
lation can be estimated from the constraint 
of microwave background anistropy STIT 5 

in the extreme case of a sheetlike seed 
model, for example, light domain walls from 
a late-time ~ h a s e  transition. In the late time 
phase transition scenario, the cosmological 
seed and density perturbation is generated 
after the decoupling of the microwave back- 
ground, which minimizes the cosmic black- 
body radiation (CBR) anisotropy (17, 24, 
25). However, significant non-Gaussian 
fluctuations can be produced, which may 
have large amplitudes (24). To grow a fractal 

extending to scale L, the aggregation of 
matter onto the seeds will perturb the cosmic 
microwave background (24), 

where Ho is the Hubble constant and R,,,, 
is the ratio of present density of walls to the 
critical density, and the density perturbation 
6pIp induced by a wall is estimated to be 

The fractal growth process can only proceed 
when 6p/p > 1 or 6T/T 5 (HoIJ3. So STIT 
< lop5 implies L > 100h-' Mpc, where the 
normalized Hubble constant is h = Hd(100 
km s-' MpcP'). This is a natural result 
because the horizon size at the time of struc- 
ture formation serves as a cutoff for the fractal 
correlation. The horizon size R at the time of 
a late-time phas*nsition ( z  = 1000), R = 
3000 Mpc ( h d l  + -z) -' = 100h-l Mpc = 
200 Mpc, with h = 0.5. This agrees reason- 
ably well with the previous argument. 

The fractal argument not only casts fur- 
ther doubt on the 3-D-filling Gaussian 
fluctuation model with cold dark matter, 
but it also helps point the way toward 
plausible solutions. 
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Metallo-Carbohedrenes [M8CI2+ (M = V, Zr, Hf, 
and Ti)]: A Class of Stable Molecular Cluster Ions 

B. C. Guo, S. Wei, J. Purnell, S. Buzza, A. W. Castleman, Jr.* 
Findings of magic peaks corresponding to M,C,,+ (M = V, Zr, and Hf) formed from 
reactions of the respective metals with various small hydrocarbons, in conjunction with 
recent findings for the titanium system, establish metallo-carbohedrenes as a stable 
general class of molecular cluster ions. A dodecahedral structure of T,, point symmetry 
accounts for the stability of these ionic clusters. 

W e  report findings of magic peaks corre- 
sponding to M8Clz+ (where M is V, Zr, and 
Hf ) which, along with prior observations for 
Ti8ClZf, now establish metallo-carbohe- 
drenes as a class of stable molecular cluster 
ions. The auestion of whether a general class - 
of such species exists was raised following 
recent reporting (1) of a prominent (magic) 
peak in the distributions of titanium-carbon 
clusters generated through reactions of the 
metal with hydrocarbons using a laser vapor- 
ization source. In view of the nature of the 
species, we raised the issue of whether 
Ti8Clz+ might be the first observed member 
of a new class of molecular clusters com- 
prised of a cage-like network of carbon and 
metal atoms, possibly arranged in the form of 
a pentagonal dodecahedron. If metallo-car- 
bohedrenes do exist. it is ex~ected that other 
early transition metals should be capable of 
forming molecules of a similar type which 
would also display an unusual stability. A 
short while after the observation of Ti8ClZf, 
we extended our work to other transition 
metal systems, with particular attention to 
vanadium, and thereafter zirconium and 
hafnium. Like Ti8Clzf, all Macl2+ (M is 
V. Zr. or Hf elements) also are found to , , 

display an enhanced stability. 
The experiments were conducted with 

both a double mass spectrometer (MSNS) 
system (2) and a time-of-flight (TOF) mass 
spectrometer (3) coupled with a laser vapor- 
ization source. Ionic species comprised of 
transition metal atoms and carbons are pro- 
duced with a versatile laser-induced plasma 
reaction concept (1). Employing a simple 
laser vaporization device (4, 5 ) ,  the meth- 
odology enables the generation of pure met- 
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al-carbon and metal-nitrogen clusters in ei- 
ther neutral or ionized form. The details of 
the technique will be given elsewhere (6, 
7). Briefly, a high power laser is used to 
irradiate the surface of the metal. In the 
presence of a plasma containing both neutral 
and ionic metal species, fast dehydrogena- 
tion reactions with hydrocarbons occur. As a 
result, in many cases the hydrocarbons lose 
all hydrogens and pure metal-carbon clusters 
are generated. The distribution of the ionic ., 
species are analyzed with a quadrupole or 
TOF mass spectrometer. 

Figure 1 shows a typical mass spectrum of 
vanadium-carbon cationic clusters produced 
from reactions with CH4. Other small hy- 
drocarbons yield a similar cluster distribu- 
tion. The TOF spectrum was obtained with 
an electric pulser to attract the ionic clusters 
from the source and analvze them via TOF 
mass spectrometry. It is evident in this spec- 
trum that the oeak at a mass of 552 atomic 
mass units (amu) (magic peak) displays en- 
hanced abundance com~ared to ~roximate 
clusters. Because the reactions involve three 
elements, the molecule corresponding to the 
magic peak could, in principle, have the 
molecular formula V,CbH,, where a, b, and 
c are the number of vanadium, carbon, and 
hydrogen atoms contained in the molecule, 
respectively. However, the isotope-labeling 
experiments made with hydrocarbons con- 
tainine deuterium and 13C establish that the - 
molecule has no hydrogen atoms at all and 
contains exactly 12 carbon atoms. Based on 
these facts and its mass position, the mole- 
cule is assigned as V8C12. 

Figures 2 and 3 display the mass spectra of 
zirconium and hafnium-carbon cluster cat- 
ions, respectively. These spectra were ob- 
tained under the same experimental condi- 
tions used to obtain Fig. 1, except the use of 
the zirconium or hafnium rods instead of the 

vanadium rod. Interestinelv. the two sDectra - ,, 
are seen to truncate at z ~ ~ c , , + ~  and 
Hf8Clzf. It is well established that the 
intensity anomalies (magic numbers) ob- 
served in a mass spectrum of clusters reflect 
the stability of the corresponding cluster (8). 
Magic numbers do not always become man- 
ifested as prominent peaks, but more typi- 
cally as a discontinuity, namely truncation 
in the oresent case. in an otherwise smooth- 
ly varying distribution, indicating the forma- 
tion of geometric structures of s~ecial stabil- u 

ity. Hence, the truncation seen in Figs. 2 
and 3 indicates that Zr8Clzf and Hf8Clzf 
also display magic behavior. 

Because Zr and Hf have a similar elec- 
tronic structure to that of Ti, it is expected 
that the dodecahedron model proposed for 
Ti8Clz+ can rationalize the magic nature of 
the corresponding species, M8Clzf. As for 
the ionic form of V8Clz, although the vana- 
dium atom has one more electron than Ti, 
we believe that its geometric structure 
should also be dodecahedral, in which the 
vanadium atoms occupy eight unique posi- 
tions. In order to gain supporting evidence 
for the proposed structure, we conducted 
titration exoeriments with ND? under ther- 
mal reaction conditions. In conducting 

4 . . . . . , . , , . . I  
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Fig. 1. Time-of-flight mass spectrum of vanadi- 
um-carbon cluster cations. The labeled magic 
peak is V,C,,+. Note that there are other prom- 
inent peaks proceeding the magic M,Clzf 
which are precursors involved in the mecha- 
nism of formation of the cage-like metallo-car- 
bohedrenes. Species with one- and two-carbon 
atoms attached to M,C,,+ are also visible, 
where some carbons remain on the magic 
structure upon its closing (9). Other precursors 
to the magic peak are seen, such as (7, 12). 
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