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Reciprocal Regulation of Adipogenesis by 
Myc and C/EBPa 

Svend 0. Freytag* and Tim J. Geddes 

3T3-L1 adipoblasts that express large amounts of c-Myc cannot terminally differentiate, 
raising the possibility that Myc inhibits the expression of genes that promote adipogenesis. 
The CCAATJenhancer binding protein (CJEBPa) is induced during 3T3-L1 adipogenesis 
when cells commit to the differentiation pathway. Transfection of 3T3-L1 adipoblasts with 
the gene that encodes CJEBPa caused overt expression of the adipocyte morphology. 
Expression of Myc prohibited the normal induction of CJEBPa and prevented adipogenesis. 
Enforced expression of C/EBPa overcame the Myc-induced block to differentiation. These 
results provide a molecular basis for the regulation of adipogenesis and implicate Myc and 
C/EBPa as pivotal controlling elements. 

Proliferation and differentiation are often 
alternative and mutually exclusive path- 
ways for living cells. Because specific genes 
control these pathways, the decision to 
either proliferate or differentiate may be 
governed by the ratio of gene products that 
promote each pathway. Inappropriate ex- 
pression of genes that promote proliferation 
can favor proliferation over differentiation, 

which can result in neoplasia. Given that 
proliferation is generally incompatible with 
differentiation and vice versa, a gene that 
controls both pathways in a reciprocal man- 
ner might provide a molecular basis for this 
observation. 

The decision to either proliferate or 
differentiate begins at the cell surface with 
cues received from the environment. These 
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cues initiate events that cause changes in 
gene expression, a process often controlled 
at the level of transcription initiation. Be- 
cause sequence-specific DNA binding pro- 
teins regulate transcription initiation ( I ) ,  
they are likely to participate in the regula- 
tion of cellular proliferation and differenti- 
ation. 

The sequence-specific DNA binding 
protein c-Myc controls cellular prolifera- 
tion and differentiation (2). Expression of 
c-Myc increases when quiescent cells are 
induced to proliferate (3) and decreases 
when actively growing cells enter either a 
quiescent or replicative senescent state (4, 
5). Deregulated expression of c-Myc pro- 
motes cellular transformation and inhibits 
terminal differentiation both in vitro and in 
vivo (2). These and other observations 
suggest that c-Myc activates genes that 
promote proliferation (2, 6). However, it is 
also possible that Myc suppresses genes that 
restrict growth (7). One such candidate 
gene codes for the sequence-specific DNA 
binding protein C/EBPa (8-1 I) ,  which 
promotes 3T3-L1 adipoblast differentiation 
(I 1). Expression of CIEBPa increases dur- 
ing adipogenesis (9, 10) , and its premature 
expression in proliferating adipoblasts caus- 
es cessation of mitotic growth (I I). That 
quiescent 3T3-L1 adipoblasts do not ex- 
press C/EBPa suggests that C/EBPa is not a 
general growth suppressor. Enforced expres- 
sion of c-Myc prevents 3T3-LI adipogenesis 
by inhibiting the ability of cells to commit 
to the differentiation pathway (12, 13). 
Because CIEBPa has been implicated in 
the promotion of 3T3-L1 adipogenesis, we 
investigated whether expression of CIEBPa 
was sufficient for 3T3-L1 adipogenesis and 
whether Myc prevented adipogenesis by 
inhibiting induction of CIEBPa. 

3T3-Ll adipoblasts were transfected 
(1 4) with pZip-NeoSV(X) (15) and a plas- 
mid that contains the rat CIEBPa gene 
(pMSV-CIEBP) (8) under the control of 
the murine sarcoma virus (MSV) promoter. 
As controls, cells were transfected with a 
plasmid that contained the MSV promoter 
but lacked the CIEBPa gene (pEMSV) 
(1 6). After transfection, cells were selected 
in G418 (Boehringer Mannheim) for 2 to 3 
weeks, and the number of G418-resistant 
colonies was recorded. Dishes of cells that 
received pMSV-CIEBP produced fewer col- 
onies (-20% of the controls) than those 
that received pEMSV (Table I). The yield 
of G418-resistant colonies, and the per- 
centage of adipocyte colonies, was a func- 
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tion of the ratio of pMSV-C/EBP to pZIP- 
NeoSVV) used in the transfections (1 7). 
These results suggest that C/EBPa expres- 
sion inhibits 3T3-L1 adipoblast growth. 

After 5 days, small colonies with adipo- 
cyte morphology developed in dishes that 
received pMSV-C/EBP (Fig. 1A). Even 
though cells were maintained in mitogen- 
rich medium and were never exposed to 
inducers of differentiation (1 2), a fraction 
of the colonies (- 12%) became rounded 
and accumulated cytoplasmic lipid droplets, 
two characteristics of terminally differenti- 
ated adipocytes (12, 18). No such colonies 
developed in control dishes (Fig. 1B) (Ta- 
ble 1). The adipocyte colonies expanded at 
a slower rate than did the wntrol colonies 
and, after 2 weeks, had only 3 to 200 cells. 
Most of these colonies senesced within 2 to 
3 weeks even though they were fed fresh 
media every 3 days. Few of them lost their 
adipocyte morphology and became estab- 
lished cell lines. By contrast, the control 
colonies expanded to several thousand cells 
over the same period and readily became 
established cell lines. These results indicate 
that expression of C/EBPa is sufficient for 

3T3-L1 adipogenesis. 
To confirm this possibility, we attempt- 

ed to establish a correlation between devel- 
opment of the adipocyte morphology and 
.expression of pMSV-C/EBP. Because most 
of the adipocyte colonies senesced and nev- 
er became established cell lines, we used a 
reverse transcription-polymerase chain re- 
action (RT-PCR) assay to detect pMSV-C/ 
EBP mRNA in colonies with fewer than 
200 cells (1 9). Each assay included primers 
that detected the alpha 4 tubulin mRNA as 
an internal control and was performed with 
colonies from control and pMSV-C/EBP- 
transfected dishes. Of the 12 colonies ex- 
amined that exhibited adipocyte morphol- 
ogy, 10 expressed the pMSV-C/EBP 
mRNA at a high concentration and 1 at a 
low concentration (Fig. 2). One adipocyte 
colony with only three cells failed to pro- 
duce an RT-PCR product for pMSV-C/EBP 
and alpha 4 tubulin, which suggests that 
the colony size was below the sensitivity of 
the assay. Colonies that received pEMSV 
produced an RT-PCR product for tubulin 
but not for pMSV-C/EBP (Fig. 2). Colo- 
nies from pMSV-C/EBP-transfected dishes 

Flg. 1. Photomicrographs of 3T3-L1 colonies. (A) An adipocyte colony from a pMSV-CEBP- 
transfected dish. The refractile bodies in the cytoplasm are lipid droplets. (6) A typical colony from 
a pEMSV-transfected dish. 

Flg. 2. RT-PCR analysis of pMSV-CEBP and 1 2 3 4 5 6 7 8  91011121314 

alpha 4 tubulin mRNA in transfected 3T3-L1 
c,EBP- - a 3 

-184 

adipoblasts. The top two autoradiograms rep- -1 24 
resent different transfection experiments. Lanes TUB- -104 
1 to 6 and 15 to 20, 3T3-L1 colonies, trans- 
fected with pMSV-CEBP, that exhibited the 
adipocyte morphology; lanes 7 to 10 and 21 to 

151817i8192021P23925262728 
-1 84 

24, 3T3-L1 colonies transfected with pEMSV; CIEBP': 
lanes 29 to 34, 3T3-L1 colonies, transfected -1 24 
with DMSV-CIEBP. that did not exhibit the adi- -104 
pocyie morpholo&; lanes 11, 25, and 35, no 
extract added; lanes 12,26, and 36, same as 293031 32 3334 3538 37 3839 
lanes 1, 15, and 29, respectively, but without 
RT; lanes 13 and 27, same as lanes 1 and 15, .- - -1 84 
respectively, but the extract was pretreated CIEBF (..) -124 
with deoxyribonuclease-free ribonuclease A; TUB- 
lanes 14 and 28, same as lanes 1 and 15, 

& TUB-& u - l ~  

respectively, but the extract was pretreated with 0.1 N NaOH; lane 37, same as lane 15, but 
including only the tubulin primers; lane 38, PCR product obtained with linearized pMSV-CEBP DNA; 
lane 39, same as lane 15. The RT-PCR products for pMSV-CEBP (CEBP, 168 bp) and tubulin (TUB, 
110 bp) are indicated. The numbers on the right indicate DNA markers in base pairs. Asterisks 
indicate an RT-PCR product obtained unreproducibly wlh the tubulin primers (see lane 37). 

that did not exhibit adipocyte morphology 
did not produce an RT-PCR product for 
pMSV-C/EBP (Fig. 2). Thus, with one 
exception, there was a good correlation 
between development of adipocyte mor- 
phology and high expression of the pMSV- 
C/EBP mRNA. 

We next examined the expression of the 
aP2 gene, which increases (-100-fold) 
(20) during 3T3-L1 adipogenesis and is 
under the control of C/EBPa (10). The 
RT-PCR product specific for aP2 mRNA 
was detected in colonies that did and did 
not exhibit the adipocyte morphology (Fig. 
3). However, the amount of aP2 product 
generated by the adipocyte colonies was 
much greater than that of control colonies, 
even though the adipocyte colonies con- 
tained fewer cells. These results demon- 
strate that all the colonies that expressed 
the pMSV-C/EBP mRNA and exhibited 
the adipocyte morphology also showed ac- 
tivation of a gene that is expressed in the 
differentiated adipocyte. 

To investigate whether enforced expres- 
s i ~ n  of Myc inhibited the induction of 
C/EBPa during 3T3-L1 adipogenesis, we 
used two cell lines that constitutively ex- 
pressed either a stably transfected human 
c-myc (1 3) or Nmyc gene (2 1). Neither 
cell line can undergo adipogenesis (1 3, 17). 
As previously demonstrated (9), antibodies 
to rat C/EBPa detected two polypeptides in 
the differentiated 3T3-L1 adipocyte (Fig. 
4). One polypeptide corresponded to intact 
C/EBPa (43 kD) and the other was proba- 
bly a degradation product (34 kD). The 
imrnunoblot demonstrated that quiescent 
3T3-L1 adipoblasts did not express CIEBPa 
and that C/EBPa was induced in terminally 
differentiated adipocytes. In addition, 
C/EBPa was not induced in either the 
c-Myc (cM21) or the N-Myc (NM12) cell 
line after treatment with inducers of differ- 
entiation. Thus, expression of Myc in 3T3- 

Table 1. Number of G41 &resistant and adipo- 
cyte (A) colonies in 3T3-L1 adipoblasts trans- 
fected with pMSV-CEBP or pEMSV. The num- 
ber of G41 &resistant (G418') and adipocyte 
colonies was scored 12 to 14 days after com- 
mencement of selection. Colonies in which 
more than 50% of the cells contained cytoplas- 
mic lipid droplets were scored as adipocyte 
colonies. 

Experi- pEM SV pMSV-CEBP 

G418' A G418' A % 

1 581 0 102 10 10 
2 661 0 130 11 8 
3 544 0 86 7 8 
4 851 0 179 23 13 
5 640 0 156 24 15 
6 1163 0 214 32 15 

Total 4440 0 867 107 12' 

'Mean. 
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Flg. 3. RT-PCR analysis of aP2 mRNA in trans- 
fected 3T3-L1 adipoblasts. Lanes 1 to 13, same 
as in Fig. 2; lanes 14, RNA (1 ng) from differ- 
entiated 3T3-L1 adipocytes; lane 15, RNA (1 
ng) from undifferentiated 3T3-L1 adipoblasts. 
The aP2 RT-PCR product (aP2, 84 bp) is indi- 
cated. The numbers on the right indicate DNA 
markers in base pairs. 

L1 adipoblasts prohibited induction of 
C/EBPa and prevented adipogenesis. 

It is possible that the loss of CIEBPa 
inducoion in Myc-transformed cells is neces- 
sary for the Myc-induced block to differen- 
tiation. If this were true, CIEBPa expression 
in Myc-transformed cells should overcome 
the differentiation block and allow normal 
adipogenesis. To test this possibility, we 
transfected Myc-1 cells, which expressed a 
stably transfected pRSVmyc gene (12), with 
either pMSV-CIEBP or pEMSV and exam- 
ined them for the ability to differentiate into 
adipocytes. We chose Myc-1 cells for these 
experiments because the function of c-Myc 
in preventing 3T3-L1 adipogenesis is well- 
characterized (12). Similar to the results 
obtained with 3T3-L1 adipoblasts, a fraction 
(-5%) of the colonies in pMSV-CIEBP- 
transfected dishes developed the adipocyte 
morphology (Table 2). No such colonies 
developed in the control dishes. RT-PCR 
analysis confirmed that only the adipocyte 
colonies expressed the pMSV-CIEBP 
mRNA and that they continued to express 
the pRSVmyc mRNA (17). Thus, develop- 
ment of the adipocyte morphology correlat- 
ed well with expression of the pMSV-CIEBP 
mRNA and was not a result of suppression or 
loss of the stably integrated pRSVmyc gene. 
These results demonstrate that expression of 
CIEBPa overcame the Myc-induced block 
to differentiation. 

There were two notable differences be- 
tween the results of the Myc-1 and 3T3-L1 
cell transfections. First, the effect of pMSV- 
CIEBP on the yield of G418-resistant col- 
onies was less dramatic with Myc-1 cells 
(-50% of pEMSV) than with 3T3-L1 adi- 
poblasts (-20% of pEMSV). Second, the 
percentage of G418-resistant colonies that 
developed the adipocyte morphology was 
also less with Myc-1 cells (-5%) than with 
3T3-L1 adipoblasts (-12%). Thus, the 
ability of CIEBPa to promote adipogenesis 
was compromised somewhat in Myc-1 cells. 
It is possible that the resulting phenotype is 
dependent on the relative amounts of the 
Myc and C/EBPa proteins. 

The findings of this study provide a 
molecular basis for the observation that 
deregulated proliferation is generally in- 

Flg. 4. Protein immunoblot of C/BPa in normal 
and Myc-transformed 3T3-L1 adipoblasts. 
Cells were harvested on days 0 (-) and 8 (+) 
after initiation of the differentiation program 
(12). Soluble nuclear protein (5 pg) was ap- 
plied to duplicate SDS-polyacrylamide (15%) 
gels. The immunoblots were probed with either 
the alpha 14 polyclonal antisera to rat CEBP 
(on the left) (9) or antisera to mouse f3 tubulin 
(on the right). The numbers on the left indicate 
protein molecular size markers in kilodaltons. 
Arrowheads indicate the positions of the 
CEBPa polypeptides; 3T3-L1, untransfected 
3T3-L1 cell line; cM21,3T3-L1 cell line express- 
ing a stably transfected human c-myc gene 
(pM21) (13); and NM12, 3T3-L1 cell line ex- 
pressing a stably transfected human N-myc 
gene (pMP34.1 N, (21). 

compatible with differentiation. Deregulat- 
ed expression of Myc, which promotes pro- 
liferation, prohibits the expression of 
CIEBPa, which promotes terminal differ- 
entiation. When Myc levels are high, nor- 
mal 3T3-L1 adipoblasts are locked in a 
proliferation-competent state, and normal 
differentiation cannot be activated. When 
Myc concentrations are low, resting 3T3- 
L1 adipoblasts can proceed along a pathway 
that leads to either proliferation or differ- 
entiation depending on cues from the envi- 
ronment. Thus, Myc functions at a pivotal 
control point in the proliferative and differ- 
entiation pathways. Although it is not 
known how Myc inhibits the induction of 
CIEBPa, the promoter of the mouse 
CIEBPa gene (22) contains the Myc bind- 
ing site core sequence (CACGTG) (23). 
Thus, Myc may inhibit expression of 
CIEBPa directly, by binding to CIEBPa 
promoter sequences, or indirectly, either by 
activating genes that repress CIEBPa tran- 
scription or by preventing the function of 
proteins that activate the CIEBPa gene. 

Expression of CIEBPa in proliferating 
3T3-L1 adipoblasts causes growth arrest 
(I I) (Table 1). This effect of CIEBPa was 
demonstrated when cells were-in mitogen- 
rich media and at low density. Because 
quiescent 3T3-L1 adipoblasts do not ex- 
press CIEBPa (Fig. 4), it is unlikely that 
CIEBPa mediates reversible growth arrest, 
or quiescence. Instead, these observations, 

Table 2. Number of G418-resistant and adipo- 
cyte (A) colonies in Myc-1 cells transfected wlh 
pMSV-CEBP or pEMSV. The number of G418- 
resistant (G4183 and adipocyte colonies was 
scored 12 days after commencement of selec- 
tion. Colonies in which more than 50% of the 
cells contained lipid droplets were scored as 
adipocyte colonies. 

Experi- pEMSV pMSV-CEBP 

merit G418' A (3418' A % 

1 313 0 156 7 4 
2 296 0 147 9 6 

Total 609 0 303 16 5* 

'Mean 

together with the fact that C/EBPa is 
induced when cells commit to the differen- 
tiation pathway, argue that expression of 
CIEBPa promotes a state of irreversible 
growth arrest that is associated with termi- 
nal differentiation, or replicative senes- 
cence. Enforced exmession of Mvc does not 
inhibit the ability bf cells to enier a quies- 
cent state in GO/Gl (12) but rather Dre- . ,  
cludes entry into a replicative senescent 
state. We show here that Myc prohibits the 
expression of a gene that induces a state of 
growth arrest resembling replicative senes- 
cence. Myc may immortalize primary ro- 
dent cells in vitro by means of a similar 
mechanism. Moreover, because the ability 
of Myc to inhibit terminal differentiation is 
closely linked to its transforming activity 
(1 3), deregulated expression of Myc in vivo 
may initiate tumorigenesis by preventing 
replicative senescence. 
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Cell Cycle-Regulated Binding of 
c-Abl Tyrosine Kinase to DNA 

Edward T. Kipreos* and Jean Y. J. Wangt 
The proto-oncogene c-abl encodes a protein tyrosine kinase that is localized in the cy- 
toplasm and the nucleus. The large carboxyl-terminal segment of c-Abl was found to 
contain a DNA-binding domain that was necessary for the association of c-Abl with 
chromatin. The DNA-binding activity of c-Abl was lost during mitosis when the carboxyl- 
terminal segment became phosphorylated. In vitro phosphorylation of the DNA-binding 
domain by cdc2 kinase abolished DNA binding. Homozygous mutant mice expressing a 
c-Abltyrosine kinase without the DNA-binding domain have been reported to die of multiple 
defects at birth. Thus, binding of the c-Abl tyrosine kinase to DNA may be essential to its 
biological function. 

T h e  proto-oncogene c-abl was first isolated 
from the mouse genome as a gene with - - 
similarity to the v-abl oncogene of Abelson 
murine leukemia virus ( I ) .  The c-abl gene 
encodes a protein tyrosine kinase that 
shares several common features with other 
cytoplasmic tyrosine kinases, for example, 
c-Abl has the Src-homology domains 2 
(SH2) and 3 (SH3) (2). Unique to the 
c-kbl tyrosine kinase, however, is a large 
COOH-terminal segment. Mutant mice - 
homozygous for a 3'-deletion of c-abl and 
expressing an active c-Abl tyrosine kinase 
truncated at its COOH-terminus have mul- 
tiple defects at birth (3). This observation 
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indicates that the COOH-terminal region 
of c-Abl is essential for its bioloeical func- 

u 

tion. The c-Abl protein undergoes a cell 
cycle-regulated Ser-Thr phosphorylation 
and all the mitosis-specific phosphorylation 
sites are localized in the COOH-terminal 
segment (4). The mitotic phosphorylation 
does not appear to alter the tyrosine kinase 
activity of c-Abl (4). This result suggested 
that Ser-Thr phosphorylation might regu- 
late other functions associated with the 
COOH-terminal segment. 

While attempting to purify the c-Abl 
protein, we found that it was preferentially 
retained on a calf thymus DNA-cellulose 
column. When NIH 3T3 cell lysates were 
applied to DNA-cellulose columns (1.2 mg 
of protein per milliliter of bed volume in 
100 mM KCI), less than 20% of the total 
cellular protein was bound, whereas 60 to 
80% of the total c-Abl protein was retained 

SH3lSH2 kinase domain 
"1 

Sac I Apa I Xho I Stu I Apa I Sal I 
DNAcellulose Southwestern Ol~gonucleot~de 

I 
blndlng bloning gel-shift 

c-abl IV I - +++ ++++ N.D. 

ASac - I ai .+ri ,  - N.D. 

Sac to End . > a  &6 d&I*V4 f ' * j r ++++ N.D. N.D. 

ASal i + *i . Y : < .  , ;e&ff; ' 1 +++ ++++ N.D. 

AXho I * I<+& i ?  % \  -&, i - - N.D. 

GXS VJ ++++ ++++ +++-I 

GXU - - -/+ 

GUS EGd ++ ++++ +++ 

GSE N D - - 

Fig. 1. Summary of constructs and results on DNA-binding assays. SH3, Src-homology domain 3; 
SH2, Src-homology domain 2; and N.D., not determined. The deletion and fus~on proteins were 
prepared w~th the restriction enzymes ~ndicated in the figure by standard recombinant DNA 
methods. Proteins were expressed in COS cells or in bacteria. DNA-cellulose binding (5): + + + + 
indicates 80 to 100% of the Abl protein in cell lysates was bound; + ++ indicates 60 to 80% bound; 
++ indicates 30 to 50% bound; -I+ indicates <5% bound; and - indicates no binding. Refer to 
Fig. 2 for Southwestern blotting and oligonucleotide gel sh~ft results. 
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