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Calcium-Regulated Phosphorylation Within the 
Leucine Zipper of C/EBPP 

Michael Wegner, Zhaodan Cao, Michael G. Rosenfeld* 
Alterations in intracellular calcium levels activate several signal transduction pathways 
resulting in distinct patterns of gene expression. Here, a pathway for calcium-mediated 
signals is demonstrated that involves CIEBPP, a member of the bzipfamily of transcription 
factors. In pituitary cells CIEBPP was phosphorylated in response to increased intracellular 
calcium concentrations as a consequence of the activation of a calcium-calmodulin- 
dependent protein kinase. Phosphorylation of serine at position 276 within the leucine 
zipper of CIEBPP appeared to confer calcium-regulated transcriptional stimulation of a 
promoter that contained binding sites for CIEBPP. 

M a n y  regulatory molecules that function 
by binding to plasma membrane receptors 
cause changes in the intracellular Ca2+ 
concentration (I ) . This second messenger 
can modulate the expression of target genes 
by effecting changes in the phosphorylation 
status of specific transcription factors. Many 
Caz+-mediated changes in gene expression 
have been attributed to the phosphoryla- 
tion of transcription factors by protein ki- 
nase C (2). However, fluctuations in intra- 
cellular Ca2+ concentrations can also acti- 
vate Ca2+-calmodulin-dependent kinases 
(3, 4), the most studied of which is the 
multifunctional Cazt-calmodulin-depen- 
dent protein kinase I1 (CaMKII) (5) iso- 
zymes, which are expressed in most tissues 
(6) - 

In transient transfections of a pituitary 
cell line (GIC), the DNA sequence motif 
5'-AAATGTAGTCTTATGCAATACA- 
CTTGTAGTCTTGCAACA-3' rendered 
a reporter gene responsive to a constitutive- 
ly active mutant of the brain-specific a-sub- 
unit of CaMKII (4). Critical positions with- 
in this CaMKII responsive element 
(CaMRE) coincide with binding sites for 
the nuclear factor C/EBP (7) (Fig. 1A). 
We hypothesized that CaMKII might exert 
its stimulation either directly or indirectly 
through a member of the CEBP family of 
transcription factors (8). Members of this 
family belong to the bZip class of transcrip- 
tion factors. These factors contain a basic 
DNA-binding region adjacent to a leucine 
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zipper dimerization domain and can form 
homodimers or heterodimers with other 
bZip proteins (9-1 2). 

Electrophoretic mobility shift experi- 
ments with a 32~-labeled CaMRE and GIC 
nuclear extract yielded four complexes (C1 
to C4) (4) (Fig. lB), all of which displayed 
the same methylation interference pattern 
(1 3) (Fig. 1A). This pattern was also iden- 
tical to the one obtained with bacterially 
produced recombinant C/EBPa. Antisera 
to known members (a ,  p, and 6) of the 
C/EBP family (9, 10) were used to establish 
the identity of the CaMRE binding activity 
in GIC nuclear extracts (Fig. 1B). Only the 
antiserum to C/EBPP reacted specifically 
with the complexes formed between G/C 
nuclear extract and the CaMRE. Whereas 
low concentrations of antiserum caused the 
formation of new complexes with lower 
mobility, higher concentrations of the 
CIEBPP-specific antiserum resulted largely 
in the elimination of the G/C cell-specific 
complexes (Fig. 1C). The observation that 
complexes C1 to C4 were equally affected 
by the CEBPP-specific antiserum suggests 
that C/EBPP is present in all of these 
complexes and, as the major CaMRE bind- 
ing protein in G/C cells, is a potential 
target for CaMKII. 

To assess the ability of CEBPP to be 
phosphorylated, we performed immunopre- 
cipitations on nuclear extracts prepared 
from GIC cells labeled in vivo with 
[32~]orthophosphate (14) (Fig. 2A). The 
amount of phosphorylated C/EBPP was 
2.5-fold greater in untreated G/C cells than 
in cells treated with the CaMKII inhibitor 
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elevated 3.5-fold in response to the Cat+ 
ionophore A23187 when compared to un- 
treated cells, and 9-fold when compared to 
KN-62-treated cells. The concentration of 
C/EBPP protein was quantitated by 
[35S]methionine labeling and was equiva- 
lent in control and treated cells. Because no 
A23187dependent increase in the rate of 
phosphorylation was observed when the 
cells were pretreated with KN-62 (Fig. 2A), 
it seems likely that most of the Cat+- 
dependent phosphorylation of CIEBPP is a 
result of ca2+dependent activation of 
CaMKII or related kinases. 

We used bacterially expressed CIEBPP 
to test whether CaMKII could phosphoryl- 
ate CIEBPP in vitro (Fig. 2B) (16). Indeed, 
CIEBPP was as efficient a substrate for 
CaMKII as was the cyclic AMP (adenosine 
3',5'-monophosphate) response element 
binding protein (CREB), the only other 
transcription factor known to be phosphor- 
ylated by CaMKII (3). CIEBPa (9) was not 
a substrate of CaMKII (Fig. 2B). When 
CaMKII was replaced by the catalytic sub- 
unit of protein kinase A, CIEBPP was 
phosphorylated one to two orders of mag- 
nitude less than was CREB, which is phos- 
phorylated equally well by both kinases (3). 
Thus, in contrast to CREB, CIEBPP is an 
efficient substrate for CaMKII, but not for 

protein kinase A. Thus, a potential activa- 
tion of CIEBPP in vivo by protein kinase A 
(1 7) is likely to involve an indirect mech- 
anism. 

As a means of mapping in vim the 
phosphorylation sites for CsMKII, we per- 
formed a deletion analysis of CIEBPP (18). 
Truncated versions of CIEBPf.3 that con- 
tained only the 139 or 264 NH2-terminal 
amino acids were poor substrates for 
CaMKII, whereas mutants that contained 
either the 286 NH2-terminal or the 86 
COOH-terminal amino acids were phos- 
phorylated by CaMKII as efficiently as was 
full-length CIEBPf3 (Fig. 3A). Therefore, 
the major phosphorylation site for CaMKII 
was between amino acids 264 and 286 of 
CIEBPP, a region of the protein that con- 
tained the leucine zipper dimerization do- 
main. Closer inspection of the primary 
amino acid sequence revealed that this 
region is the only part of the protein with a 
consensus phosphorylation site for CaMKII 
[Arg-X-X-(SerIThr)] (1 9) (Fig. 3B). Muta- 
tion of the Se?76 to alanine reduced the in 
vitro phosphorylation of CIEBPP to back- 
ground amounts, whereas mutation of a 
serine residue in the NH2-terminal portion 
of the protein (Ser'? did not affect 
CaMKII-mediated phosphorylation (Fig. 
3A). These studies implicate Ser276 of 

A Upper strand Lower B 1:1000 ,:loo 
C 

C/EBPa C1 C2 C3 C4 Strand anti- anti- 
- ---- -- 
B F B F B F B F B F  B F  - + a p 6 a p  6 

Flg. 1. Identification of CEBPB as the major CaMRE binding protein in G/C cells. (A) Methylation 
interference experiments on the complex formed between bacterially expressed CEBPa and the 
CaMRE as well as on complexes C1 to C4 observed between GIC nuclear extracts and the CaMRE. 
Major groove contacts are marked by asterisks. The interference pattem for the lower strand is 
shown only for C1 and was identical for C1 to C4 and bacterially expressed CEBPa. (B and C) 
Electrophoretic mobility shift experiments with a 32P-labeled CaMRE in the presence of WC nuclear 
extract and antisera to various members of the CEBP family. Preimmune serum showed no effect 
on the mobility shift pattem (22). No cross-reactivity between the antisera could be detected. The 
supershift observed with the antiserum specific for CEBPp was reproduced with a second 
antiserum to CIEBPB (22). In (B), the antisera (a, anti-CEBPa; p, anti-CEBPp; 6, anti-CEBPG) were 
added at dilutions of 1 :I000 and 1:100 as indicated. In (C), the antiserum to CIEBPp was added at 
dilutions of 1 :4000,1:1000,1:400,1:100, and 1 :40, respectively, as indicated by the triangle above 
the lanes. 

CIEBPP as the major in vim phosphoryla- 
tion site for CaMKII. 

We tested the ability of CaMKII to 
activate CIEBPP in G/C cells in transient 
transfection assays (20) with a cat+-inde- 
pendent, constitutively active variant of 
CaMKII (CaMKal-290) (4) (Fig. 4). Ex- 
pression of CIEBPP resulted in a two- to 
threefold increase in expression of a lu- 
ciferase reporter gene under the control of a 

Fig. 2. Phosphorylation of CEBPB. (A) Immu- 
noprecipitation of [32P]orthophosphate- and 
[35S]methionine-labeIed CEBPB from WC 
cells. WC cells remained untreated or were 
exposed for 40 min to KN-62 (1.5 pM) and 30 
min to A23187 (1 pM) as indicated above the 
lanes. (B) In vitro phosphorylation of bacterially 
expressed proteins by purified brain CaMKll 
and the catalytic subunit of protein kinase A 
(PKA). Reactions were performed in the pres- 
ence of r-[32P]ATP. As in (A), labeled products 
were separated on SDS-polyacrylamide gels 
(1 0%) and were visualized by autoradiography. 
The amount of phosphorylation for CEBPp in 
vitro was compared to those of known kinase 
substrates (MAP-2. CREB) and to that of the 
related CEBPa. In (A) and (B), the sizes of 
marker proteins (in kilodaltons) are indicated 
between the panels. 
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Fig. 3. Identification of phos- 
phorylation sites on CiEBPp. 
(A) In vitro phosphorylation 
by purified brain CaMKII. 
Truncated versions of 
C/EBPp that contain the 
NH2-terminal 139, 264, or 
286 amino acids, respec- 
tively (A139, A264, or A286), 
a fragment that encom- 
passed the 86 COOH-termi- 
nal amino acids of CiEBPp 
(p peptide), and two 
C/EBPp mutants with amino 
acid substitutions at position 
100 (C100) or 276 (A276) 
were used to map the phos- 
photylation site for CaMKll 
on CIEBPB to Ser276 fwd. . - . 1 .  

"BP~). labed C ( E B P  PI250 Po 296, T Q H K v L ~ L T ~ E N ~ ~ ~ x K v ~ ~ s  ~2Tii~~LpE~LLA.w 
D ~ O ~ U C ~ S  were semrated on . E 9 P  3 10 tP 3 5 9 ,  T ? I ~ Y V L E L T S T ~ ! ~ ? ~ F P ? ~ ~ L C I . C  EEI .T  T rQr81 .PESTLVVhF8 ; l JCA . . 

SDSpolyactylamjde gels c ' X P S P ~  I Q  to 2" 1 M~~:"L~V: ;LT~~- . : ;  XL~~:CI:Z~K F L " ~  XF-~FFL. ' . :?C.PI~L~ ~ T = A ~ C R  

(15%). (B) Localization of C ~ M K I :  consensus RXX: 

the phosphorylation site in U 
the leucine zipper of CiEBPp and comparison with similar regions from other CiEBP proteins (10). 
Numbers in parentheses indicate amino acid positions. 

promoter that contained a multimerized 
CaMRE. Expression of constitutively active 
CaMKII resulted in a 10- to 12-fold stimu- 
lation of the same promoter. This may have 
been the result of activation of endogenous 
CIEBPP, as mutations within the CIEBP 
binding sites abolished the stimulation. 
With both CIEBPP and constitutively ac- 
tive CaMKII, expression of the reporter 
gene was stimulated 60-fold. This was not 
observed when CIEBPP was expressed to- 
gether with an inactive form of CaMKII (4) 
that contained a lysine to methionine sub- 

stitution at residue 42 (M42 in Fig. 4). The 
CaMKII-mediated stimulation was specific 
for CIEBPP because CIEBPol did not re- 
spond to CaMKII. The mutation of Ser276 
to Ala caused CIEBPP to lose its ability to 
be activated by CaMKII in transient trans- 
fection experiments (PA276 in Fig. 4). 
Responsiveness to CaMKII was abolished in 
a mutated CIEBPP that consisted of only 
the COOH-terminal half of the protein, 
although it still contained Ser276 (PAN in 
Fig. 4). Thus, for the phosphorylation site 
at Ser276 to exert its effect on gene expres- 

Fig. 4. Transient transfec- Effector CaMK Reporter 
tion experiments in G/C - - I 
cells. The reporter plasmid - - 4Xcah4RE 

contained four tandem 1-290 4xCaMRE 
M42 4xCaMRE 

copies of the CaMRE or a 
mutated version in front of 15' - 4x CaMRE 

the rat prolactin minimal 2z:E 
Dromoter (from ~osition 
136 to +33), which drove 2.e - 4xCaMRE b -. . 

transcriptionbf a luciferase 1-290 4xCaMRE 
reporter gene. The effector CEBPB 4xCaMRE - 
plasmids contained the 1-290 ~ x C ~ M R E ~ , ~  
cDNAs of C/EBPa or 
C/EBPB [in its wild-type 
version, with Sei76 mutat- 29. - 4x CaMRE 
ed to (BA276) Or CEBPB 1-290 
after deletion of the NH,- b- 
terminus (BAN)] under the - 
control of the CMV Dromot- PA276 1-290 4xCaMRE 

er. Reporter and 'effector 15' '" 
E d  - 4x CaMRE plasmids were cotrans- 1-290 ~ X C ~ M R E  

fected with vectors ex- ' I A 

pressing a constitutively 200 400 Ur 1000 1200 

active (1-290) or inactive Luciferase activity (i.uJrng) 
version (M42) of CaMKll 
(4) as indicated. Transcription from the reporter was determined by the luciferase activity of cellular 
extracts and was measured as the amount of light units per microgram of protein (I.u./kg). Results 
are the average of two to three independent experiments, each performed in triplicate + standard 
error of the mean. 

sion, the major NH,-terminal transactiva- 
tion domain (12, 21) was necessary. 

The mechanism by which the phosphor- 
ylation of Ser276 changes the activity of 
C/EBPP is unknown. Phosphorylation of 
Ser276 did not detectably affect the DNA- 
binding affinity of CIEBPP or its ability to 
form homodimers (22). Contrary to PC12 
but similar to HeLa cells (17), CIEBPP is 
localized predominantly in the nucleus of 
GIC cells, independent of whether the cells 
were treated with a Ca2+ ionophore (4, 
22). Therefore, nuclear translocation does 
not seem to be a result of Ca2+-dependent 
activation of CIEBPP in GIC cells. 

Although Ser276 is not part of the dimer- 
ization interface of the leucine zipper (23), 
phosphorylation of this residue might mod- 
ify the conformation of the leucine zipper. 
Thus, phosphorylation might change the 
ratio of homo- to heterodimers within the 
cells or might result in a switch of dimer- 
ization partners in heteromeric complexes. 
The possibility of a change in heteromeric 
partners is intriguing, given the existence 
of a C/EBP-related protein that has a leu- 
cine zipper dimerization domain but lacks 
an adjacent functional DNA-binding re- 
gion (24). Heterodimers between this pro- 
tein and other CIEBP family members are 
incapable of DNA binding (24). Altema- 
tively, phosphorylation of Ser276 might not 
be the final step in the activation of 
CIEBPP. The Ca2+-dependent phosphoryl- 
ation at Ser276 could change the conforma- 
tion of the protein to make a different target 
accessible to other unidentified kinases. 

This report provides direct evidence for 
the existence of a distinct signal transduc- 
tion pathway by which alterations in intra- 
cellular Ca2+ levels can be translated 
into changes in gene expression by way of 
Ca2+-calm~dulin-de~endent protein ki- 
nases and independent of protein kinase C 
activation. Phosphorylation of CIEBPP 
can be mediated by CaMKII. However, 
because other multisubstrate Ca2+-cal- 
modulin-dependent protein kinases exist 
in most cells, some of which may exhibit 
similar substrate specificities (25), we can- 
not determine with certainty whether one 
or several of the Ca2+-calmodulin-depen- 
dent protein kinases are responsible for the 
phosphorylation of CIEBPP in vivo. An 
activation mechanism similar to the one 
for CIEBPP might also operate for immu- 
noglobulin-EBP-1, another member of the 
C/EBP family, which on the basis of se- 
quence analysis has similar potential phos- 
phorylation sites (26). Because both 
C/EBPP and most ca2+-calmodulin- 
dependent protein kinases are expressed in 
cells assuming differentiated phenotypes 
(27), this signal transduction pathway 
may be particularly used in terminally 
differentiating cells. 
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Alternative Forms of Max as Enhancers or 
Suppressors of Myc-Ras Cotransformation 

Tomi P. Makela, Paivi J. Koskinen, lmre Vastrik, Kari Alitalo* 
Max is a basic-helix-loop-helix-leucine zipper protein capable of forming sequence-spe- 
cific DNA binding complexes with Myc proteins. An alternatively spliced messenger RNA 
has been identified that encodes a form of Max truncated at the COOH-terminus. This 
AMax protein retained the ability to bind to the CACGTG motif in a complex with c-Myc but 
lacks the nuclear localization signal and the putative regulatory domain of Max. When 
tested in a myc-ras cotransformation assay in rat embryo fibroblasts, Max suppressed, 
whereas AMax enhanced, transformation. Thus, the maxgene may encode both a negative 
and a positive regulator of c-Myc function. 

Members of the myc gene family have been 
implicated in the control of normal cell 
proliferation as well as in neoplasia (1 ) .  A 
more direct role for myc genes in transfoma- 
tion is indicated by their ability to transform 
primary rat embryo fibroblasts in association 
with the c-Ha-ras oncogene (2). Adjacent 
basic-helix-loop-helix (bHLH) and leucine 
zipper (Zip) DNA binding and dimerization 
motifs (3) in the COOH-terminus of Myc 
proteins are similar to motifs found in several 
E-box-binding transcriptional regulators 
(4). The ability of Myc to bind to an 
E-box-containing core sequence CACGTG 
(5) is enhanced by heterodimerization with 

the bHLH-Zip protein Max (6-8). 
We amplified max-specific sequences 

from human erythroleukemia cell (HEL) 
cDNA by the polymerase chain reaction 
(PCR) (9). Analysis of the PCR products 
revealed two separate bands of about 500 
and 600 base pairs (bp). Sequence analysis 
indicated that the larger band contained a 
101-bp insert in the middle of the coding 
sequence (Fig. 1A). Further PCR studies 
from human, mouse, and rat genomic DNA 
indicated that the additional sequence was 
derived from an alternatively spliced exon 
(Fig. IB) that is conserved in evolution 
(10). 

This alternative exon introduced an in- 

Laboratory of Cancer Biology, Departments of Virolo- frame termination 
gy and Pathology, University of Helsinki, Haart- which predicted the formation of a truncat- 
maninkatu 3, 00290 Helsinki, Finland. ed Max polypeptide (AMax) that consisted 
*To whom correspondence should be addressed. of 103 amino acids. The 98 NH,-terminal 
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