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Lithium-Sensitive Production of lnositol 
Phosphates During Amphibian Embryonic 

Mesoderm Induction 

John A. Maslanski,* LeeAnn Leshko, William B. Busat 
Mesoderm induction and body axis determination in frog (Xenopus) embryos are thought 
to involve growth factor-mediated cell-cell signaling, but the signal transduction pathways 
are unknown. Lit, which inhibits the polyphosphoinositide (PI) cycle signal transduction 
pathway in many cells, also disrupts axis determination and mesoderm induction. Amounts 
of the PI cycle-derived second messenger, inositol 1,4,5-trisphosphate, increased during 
mesoderm induction in normal embryos; addition of Lit inhibited the embryonic inositol 
monophosphatase and reversed this increase. Embryonic PI cycle activity thus shows 
characteristics that indicate it may function in mesoderm induction and axis determination. 

Among  the earliest developmental deci- 
sions made by vertebrate embryos are those 
that determine the prospective germ layers 
(endoderm, mesoderm, and ectoderm) and 
body axes (dorsoventral and anteroposte- 
rior). For embryos of the frog, Xenopus 
laeuis, experiments involving either cell 
transplantation or imposition of cell-imper- 
meable filters between blastomeres indicate 
that mesoderm induction and its corollary, 
axis determination, begin at about the 32- 
to 64-cell stage (1) and involve secreted 
diffusible factors that are released from pro- 
spective endodermal ("vegetal") cells and 
act on their overlying equatorial and "ani- 
mal hemisphere" neighbors (2, 3). Three 
such signals have been proposed to exist 
(4), differing across the prospective dorso- 
ventral axis. 

Dorsal and ventral mesoderm-inducing 
signals may include homologs of the growth 
factors activin and basic fibroblast growth 
factor (3, 5), but whatever the inducing 
factors may be, the intracellular signal 
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transduction pathways used in mesoderm 
induction remain unknown. Involvement 
of the PI cycle has been suggested on the 
basis of the teratogenic effect on mesoderm 
induction of the PI cycle inhibitor Li+ (6, 
7). Activation of the PI cvcle bv calcium- 
mobilizing hormones or growth factors leads 
to hydrolysis of the plasma membrane phos- 
pholipid, phosphatidylinositol 4,5-bisphos- 
phate, generating inositol 1,4,5-trisphos- 
phate (IP,), which triggers release of Ca2+ 
from the endoplasmic reticulum into the 
cytosol, and diacylglycerol, the endogenous 
activator of protein kinase C (8). Lithium 
inhibits the inositol mono- and bisphos- 
phatases that recycle IP, to myo-inositol, 
the precursor of the inositol phospholipids 
(9). Injection of Li+ into a ventral vegetal 
cell of the 32-cell Xenopus embryo redirects 
the developmental fates of that cell's prog- 
eny toward dorsal mesodermal derivatives 
and dorsal organizer tissue (6. 10). This - ~. , 
effect is prevented by co-injection of myo- 
inositol, whereas epi-inositol (an isomer not 
used in the PI cvcle) has no effect (6). Such , ,  , , 
isomer-specific rescue implicates the PI cy- 
cle as the target of Li+ and suggests PI cycle 
involvement in normal mesoderm induc- 
tion and axis determination. We investigat- 
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ed Li+-sensitive inositol phosphate produc- 
tion in Xenopus embryos during mesoderm 
induction. 

To test whether teratogenic doses of Li+ 
inhibit the embryonic PI cycle, we deter- 
mined the masses of myo-inositol and total 
inositol phosphates (I I) with a fluorometric 
mass assay (1 2). As early as 5 min after Li+ 
treatment, embryonic myo-inositol mass 
was depressed and total inositol phosphate 
mass was increased (Fig. I) ,  and this effect 
lasted at least 50 min (approximately two 
cell cycles). These opposing effects on the 
substrates and product of inositol mono- 
phosphatase are consistent with its inhibi- 
tion by Li+ at this teratogenically effective 
dose and support the "inositol depletion 
hypothesis" of the teratogenic mechanism 
of lithium action (7). 

If PI cycle activity is involved in normal 
mesoderm induction, then mass changes in 
IP, should coincide with the induction 
process. Using a commercial IP, radiolig- 
and-binding assay (13) we observed basal 
IP, masses of 74.6 + 8.0 h o l  per embryo at 
the eight-cell stage (Fig. 2A), equivalent to 
a concentration of 0.11 pM if distributed 
homogenously throughout the embryo's cy- 
tosolic volume of -0.65 pl. This value was 
similar to that determined in preliminary 
studies of unfertilized eggs and four-cell 
embryos (14). Between the 32- and 64-cell 
stages, however, total IP, mass more than 
doubled on average, or more than quadru- 
pled when inter-clutch variability was con- 
trolled by normalizing data from each 
clutch. The IP, mass remained greater than 
the basal value through at least the 2048- 
cell stage. The IP, increase reported here is 
probably due to a specific signaling event 

rather than, for example, a general upturn 
in embrvonic metabolism because another 
second messenger, cyclic adenosine 3 ' ,5 '- 
monophosphate (CAMP), did not vary from 
its basal mass of 1.30 + 0.28 pmol per 
embryo by more than 8% between the 16- 
and 512-cell stages, as determined with 
radioimmunoassay (embryos from six fe- 
males). 

The elevation of IP, mass temporally 
corresponded with the previously deter- 
mined onset of mesoderm induction (1) and 
with the period of development during 
which Li+ has teratogenic effects (Fig. 2B). 
Sensitivity to Li+ was first observed at the 
32- to 64-cell stages, slightly preceding or 
coinciding with the IP, increase in normal 
embryos, and Li+ sensitivity remained 
throughout the period over which IP, mass 
was increased. Thus. enhanced PI cvcle 
activity in normal embryos (as evidenced by 
second messenger accumulation) correlated - 
temporally with both the onset of meso- 
derm induction and the Li+-sensitive ~ e r i -  
od of development. 

Embryos treated with a teratogenic Li+ 
dose at the 128-cell stage showed a signifi- 
cant depression of IP, mass from the 5 12- to 
at least the 2048-cell stage (Fig. 3). Thus, 
the burst of IP, accumulation accompany- 
ing the onset of mesoderm induction was 
reversed by teratogenically effective Li+ 
treatment, in keeping with the hypothesis 
that PI cycle inhibition is the basis of 
Li+-induced teratogenesis (6, 7). 

The earliest known steo in dorsoventral 
axis determination is a microtubule-mediat- 
ed rotation of the zygote's subcortical cyto- 
plasm with respect to the cell cortex that 
occurs before the first cleavage division. 

Fig. 1. Time course of changes in embryonic mass 2.0 - ' ' 
content of (A) inositol mono-, bis-, and trisphosphates A 

(IP,,) and (B) myc-inositol after a teratogenically 
- - 

effective treatment with LiCl (.) or a treatment with - 
choline chloride (O), which is not a teratogen under E 
these conditions. Embryos from seven females were 2 1.4 - 
used. Each symbol is the mean 2 SEM of 7 to 16 
determinations, except at time = 0 (20 determina- E 
tions). To reduce inter-clutch variability, we normal- 2 - 
ized data from the embryos of an individual female to 
the values at time = 0 for that clutch. Values marked 0.8 - 
with an asterisk differ significantly from controls (Stu- 
dent's t test, P < 0.05). Eggs were fertilized in F1 
medium and dejellied as described (6). At the onset of - 
the 128-cell stage, embryos were transferred to 0.3 M 3 
LiCl or choline chloride for 6 min, then washed and 

0.9 returned to F1. At the times indicated, groups of 15 g 

quick-frozen in dry ice-isopropanol, then extracted 
embryos were pooled in a minimal volume of F1 and $ o,8 
and assayed (12). Sibling embryos were scored at 48 g 0.7- 
hours for dorsoanterior augmentation with the dor- 

- 
soanterior index (DAI), in which a DAI of 5 for a 0.6- , 
tadpole is normal, a DAl of 10 reflects complete o 10 20 30 40 50 
hyperdorsalization, and intermediate scores reflect Time (min) 
increasing degrees of dorsoanterior augmentation at the expense of ventroposterior structures (10). 
The DAI scores for LiC- and choline-treated embryos averaged 9.0 + 0.1 (n = 26) and 5.1 + 0.1 (n 
= 33), respectively. 

Ultraviolet (UV) irradiation of the zygote 
prevents this rotation and yields completely 
ventralized embryos, implicating rotation 
(some five cell cycles before the first detect- 
able onset of dorsoventral mesoderm induc- 
tion) in the axis determination process 
(15). We therefore compared IP, accumu- 

5l1 I I I ' I ' I L  

8 32 128 512 -2000 

Stage (cells/embryo) 

Fig. 2. Time course of (A) changes in IP, mass 
in normal embryos and (B) sensitivity to Li+- 
induced teratogenesis. In (A), embryos were 
extracted at the indicated stages as described 
in Fig. 1 and assayed for IP, (13); embryos 
from 14 females were used, and each point 
shown is the mean + SEM of 12 to 39 determi- 
nations (1 5 embryos per determination). Values 
marked with an asterisk are significantly greater 
than the basal (eight-cell) value (one-tailed 
Student's t test, P c 0.05). In (B), sibling 
embryos were treated with 0.3 M LiCl for 6 min 
at the indicated times and scored for dor- 
soanterior augmentation on the DAI scale 48 
hours later (see Fig. 1). 

Stage (cells/embryo) 

Fig. 3. Time course of reduction of embryonic 
IP, mass by a teratogenically effective Li+ treat- 
ment. Embryos were treated at the onset of the 
128-cell stage with 0.3 M LiCl (H) or 0.3 M NaCl 
(0) and extracted and assayed as described in 
Fig. 2. Values marked with an asterisk differ 
significantly from control (NaCI) values (Stu- 
dent's t test, P c 0.05). The DAI scores for Lif- 
and Naf-treated siblings were 9.0 2 0.1 (n = 
42) and 5.1 + 0.0 (n = 68), respectively. 
Embryos were from four females, and each 
point is the mean + SEM of six to ten determi- 
nations (15 embryos per determination). 
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lation in normal embryos to that in embryos 
that were UV-irradiated as zygotes to block 
subcortical rotation. The IP, mass at the 
256-cell stage was not significantly different 
in UV-irradiated (100.2 +- 10.8 fmol per 
embryo) and control embryos (103.6 +- 9.0 
fmol per embryo) (1 6). Subcortical rotation 
is therefore not a prerequisite for IP3 accu- 
mulation in the cleavage stage embryo, and 
our data do not support the suggestion that 
zygotic UV irradiation should globally en- 
hance PI cycle activity during mesoderm 
induction (7). 

Combined with the demonstration of 
rescue from Li+-induced teratogenesis by 
provision of exogenous myo-inositol (6), 
our data documenting PI cycle inhibition 
and depression of IP3 masses by teratogenic 
Li+ treatments strongly support the hypoth- 
esis that the effects of lithium on Xenopus 
development depend in large measure on its 
ability to inhibit the PI cycle signal trans- 
duction system. Lithium is also a docu- 
mented teratogen in human embryos (1 7), 
in which its mechanism of action remains 
unknown. 

The PI cycle probably functions in nor- 
mal development, as suggested by both the 
abrupt rise in IP, mass, which is coincident 
with the onset of mesoderm induction, and 
the effect of PI cycle inhibition on axis 
determination. As we shall report (18), 
when mammalian serotonin type 1C recep- 
tors (which activate the embryonic PI cycle 
when stimulated) are expressed dorsally and 
are activated during mesoderm induction, 
dorsoanterior specification is blocked in 
intact embryos, and both convergent ex- 
tension and transcri~tion of the cardiac 
actin gene (indicators of mesoderm induc- 
tion) are inhibited in ex~lants from the 
animal pole treated with exogenous activin 
A. Thus, the PI cycle seems to be part of a 
complex suite of signal transducers involved 
in induction. One role of the PI cycle, 
which the data reported here and elsewhere 
(6) suggest, could be as a mediator of the 
negative feedback signal recently postulated 
to modulate the induction process (1 9). 
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Diacylglycerol-Stimulated Formation of Actin 
Nucleation Sites at Plasma Membranes 

Aneesa Shariff and Elizabeth J. Luna 
Diacylglycerols, which are generated during phospholipase-catalyzed hydrolysis of phos- 
pholipids, stimulated actin polymerization in the presence of highly purified plasma mem- 
branes from the cellular slime mold Dictyostelium discoideum. The increased rate of actin 
polymerization apparently resulted from de novo formation of actin nucleation sites rather 
than uncapping of existing filament ends, because the membranes lacked detectable 
endogenous actin. The increased actin nucleation was mediated by a peripheral mem- 
brane component other than protein kinase C, the classical target of diacylglycerol action. 
These results indicate that diacylglycerols increase actin nucleation at plasma membranes 
and suggest a mechanism whereby signal transduction pathways may control cytoskeletal 
assembly. 

Changes in cell shape and rapid increases 
in actin polymerization are early cellular 
responses to stimulation by chemoattract- 
ants or growth factors (1, 2). Although the 
signaling pathway is unclear, it may include 
phospholipid metabolism, especially phos- 
phatidylinositide (PI) turnover. One theory 
is that phosphatidylinositol bisphosphate 

Cell Biology Group, Worcester Foundation for Experi- 
mental Biology, Shrewsbury, MA 01545. 

(PIP,) in the plasma membrane (PM) di- 
rectly controls actin assembly through in- 
teractions with PI-sensitive actin regulatory 
proteins, such as profilin and gelsolin (3). 
PIP, induces the dissociation of these pro- 
teins from actin in vitro potentiating actin 
assembly. One inconsistency of this mecha- 
nism is that in vivo PIP, concentrations are 
at a minimum shortly after chemotactic 
stimulation when actin polymerization from 
newly generated free barbed ends is increas- 
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