
curred in these lysate mixtures. Further, the 
first centriole to appear during astral forma- 
tion in our cell-free system must have as- 
sembled de novo within 4 rnin after HSA- 
extracts and U-lysates were mixed. This 
conclusion is based on the fact that neither 
centrosomes (1 3-1 5) nor centrioles (1 6, 
17) have been found in unactivated Spisuh 
oocytes or in U-lysates (18). In addition, 
asters in lysates of Spisula oocytes prepared 
2.5 rnin after activation did not contain 
centrioles, whereas those prepared 4.5 rnin 
after activation contained a single centriole 
(18). Finally, we did not find asters or 
centrioles in either HSA-extracts or U-ly- 
sates, even when we incubated them for 15 
rnin at room temperature. 
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Constructing Proteins by Dovetailing Unprotected 
Synthetic Peptides: Backbone-Eng ineered H IV 

Protease 

Martina Schnolzer and Stephen B. H. Kent* 
Backbone-engineered HIV-1 protease was prepared by a total chemical synthesis ap- 
proach that combines the act of joining two peptides with the generation of an analog 
structure. Unprotected synthetic peptide segments corresponding to the two halves of the 
HIV-1 protease monomer polypeptide chain were joined cleanly and in high yield through 
unique mutually reactive functional groups, one on each segment. Ligation was performed 
in 6 molar guanidine hydrochloride, thus circumventing limited solubility of protected 
peptide segments, the principal problem of the classical approach to the chemical synthesis 
of proteins. The resulting fully active HIV-1 protease analog contained a thioester re- 
placement for the natural peptide bond between GI$'-Gly5* in each of the two active site 
flaps, a region known to be highly sensitive to mutational changes of amino acid side 
chains. 

Protein engineering has been mainly car- 
ried out by site-directed mutagenesis (I)  or 
other techniques of genetic manipulation 
(2) and, with limited exceptions (3), has 
been restricted to substitutions based on the 
genetically coded amino acids. The chem- 
ical synthesis approach (4) to the systemat- 
ic variation of protein structure is in prin- 
ciple a much more general one and offers 
great flexibility in the incorporation of non- 
coded moieties ranging from unnatural ami- 
no acids (5) to fixed elements of three- 
dimensional (3-D) structure (6). 

An ideal approach to protein engineer- 
ing would involve the chemical ligation of 
readily available, large unprotected syn- 
thetic peptide segments to give the modi- 
fied polypeptide chain corresponding to the 
target protein or functional domain. Here 
we describe a method for the preparation of 
protein analogs in which the act of joining 
two peptides generates an analog structure 
within the protein molecule. Such an ap- 

proach allows the use of highly selective 
chemistries for the ligation reaction in a 
form of chemical dovetailing in which the 
reacting moieties on the segments to be 
ioined have reactivities tailored to one an- 
other. This approach does away with the 
need for protecting groups for other func- 
tionalities present in the protein molecule 
(7, 8) and provides a flexible, general route 
to the total chemical svnthesis of a wide 
range of protein analogs, including a new 
class of protein analog, namely, "backbone- 
engineered" proteins, in which the peptide 
bond has been replaced for structure-activ- 
ity studies. Application of this approach is 
exemplified by the preparation of a fully 
functional backbone-engineered enzyme. 

Human immunodeficiency virus-1 pro- 
tease (HIV-1 PR) is a virally encoded en- 
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zyme that cuts polypeptide chains with high 
specificity and is essential for virus replication 
(9). The 22.5-kD HN-1 PR molecule is 
made up of two identical 99-amino acid (aa) 
polypeptide chains. Comparison of the crystal 
structures of the empty (5) and inlrubitor- 
bound (1 0) enzyme revealed that on binding 
a substrate-derived inhibitor the HN-1 PR 
molecule undergoes significant conformation- 
a1 changes that are particularly pronounced in 
two exterior, functionally important "flap" 
regions (Fig. 1, A and B). From these crystal- 
lography studies it appears that peptide bonds 
in the flap regions of the HN-1 PR polypep- 
tide chain backbone are involved in the for- 

mation of @-sheet and p-turn structure, in the 
interaction that occurs between the two sub- 
units of the active dimer at the tip of each flap 
in the enzyme-mhibitor (substrate) complex, 
and in hydrogen-bonding interactions with 
bound peptide inhibitors (and, presumably, 
substrates) (Fig. 1, A and B). Mutagenesis 
studies show that the flap region is highly 
sensitive to changes in the amino acid se- 
quence (1 I). . , 

These observations make the flap region 
especially interesting as a target for protein 
backbone modifications to investigate the role 
of peptide bond interactions in HN-1 prote- 
ase activity. We used a chemical synthesis 

Fig. 1. (A and B) Structure 
of the flap regions of HIV-1 
PR complexed with the 
substrate-derived peptide 
inhibitor acetyl-Thr-lle-Nle- 
ICH,NHl-Nle-Ara-amide 
{lo):  ( ~ j  Stick f&mula of 
flaps superimposed on a 

ribbon backbone representation of the HIV-1 PR dimer. The Gly51-Gly52 peptide bond replaced in 
this work is highlighted in each flap. Backbone movements of up to 7 A were observed when the 
antiparallel p-sheet flap structures closed down over the inhibitor (substrate) peptide chain, 
excluding bulk water and allowing the interactions that are responsible for catalyzing the hydrolysis 
of specific peptide bonds. (B) Expanded scale diagram of region including the flaps, the inhibitor, 
and the active site. Hydrogen-bonding interactions shown include those between the peptide 
bonds at the tips of the flaps (Gly5" N-H to He5' >CO), and several between flaps and inhibitor 
(substrate) either directly (Gly4' > CO and Gly8' > CO) or (in case of lle50 NH and lle50' NH) 
through a unique water molecule. (C and D) Chemical structure of the peptide bond mimetic that 
was used to replace the Gly5'-Gly5* peptide bond in the native HIV-1 PR sequence. (C) Natural 
peptide bond between the two Gly residues. The peptide chain runs from right to left (compare with 
B). (D) Analog with a thioester bond between the two Gly residues. The dotted surfaces shown are 
van der Waals contact radii of atoms in the peptide bond and in the isosteric replacement. 

approach to introduce a pseudo-peptide mol- 
ecule bond (Fig. l, C and D) into the HN-1 
PR between GI$'-G~$~ in the flap region 
(Fig. 1, A and B) to produce a backbone- 
engineered analog. We took advantage of two 
facts. First, Gly is the only achiral amino acid 
and therefore there is no concern about loss of 
optical purity. Second, the Gl$'-~l$' pep- 
tide bond is located near the middle of the 
99-aa monomer chain, which means that the 
two peptide segments that were ligated were 
each -50 residues in length. The synthesis of 
high-purity -50-aa peptides is straightforward 
with current highly optimized solid-phase 
methods (4, 12). 

Our strategy was to react the unprotected 
amino-terminal half of HIV-1 PR with the 
corresponding unprotected carboxyl-termi- 
nal half to give the full-length molecule with 
the newly formed pseudo-peptide bond at 
the ligation site (Fig. 2). For this approach 
the two halves of the target polypeptide 
chain must have unique mutually reactive 
functional groups at their COOH- and NH2- 
terminals, respectively, so that the ligation 
reaction occurs in an unambiguous way. In 
this case, we used a nucleophilic substitution 
reaction where a sulfur nucleophile at the 
terminus of one of the peptide segments was 
used to attack an alkyl bromide at the 
terminus of the other segment, thereby co- 
valently linking the two segrnefits together 
through a thioester analog of the peptide 
bond (Fig. 2). The high chemical selectivity 
of this S,2 type reaction under the condi- 
tions used allowed us to carry out the liga- 
tion of the two peptide segments with all 
other functionalities unprotected. 

The peptide segments were chemically 
synthesized by stepwise solid-phase methods 
(13), cleaved and deprotected with anhy- 
drous hydrogen fluoride, purified by high- 
performance liquid chromatography 
(HPLC) (14), and characterized by ion- 
spray mass spectrometry (MS). The ligation 
reactions were carried out by mixing the 
fully unprotected amino- and carboxyl-ter- 
minal halves in 6 M guanidine hydrochlo- 
ride (GuHCl), 0.1 M sodium phosphate 
buffer at pH 4.3 (15). The solubility of 
unprotected peptides and protein fragments 
in this buffer is extremely high (here we 
used 20 mglml, -4 mM), thus eliminating 
completely the major drawback of the clas- 
sical segment ligation approach to the 
chemical synthesis of proteins, the limited 
solubility of protected peptide fragments 
(1 6). The progress of ligation was followed 
by analytical HPLC (Fig. 3) as well as by a 
fluorogenic assay (1 7) for HIV-1 PR enzy- 
matic activity (Fig. 4B). Neither peptide 
segment alone showed any detectable activ- 
ity when tested separately for enzymatic 
activity under the same conditions. 

The ligation of HIV-1 PR (1-50,Gly- 
aCOSH) with [BrCH2C0(53-99)lHIV-1 

222 SCIENCE VOL. 256 10 APRIL 1992 



Fig. 2. Strategy for the total chemical synthesis 
of the HIV-1 PR analog (23). Functionalized, 
unprotected segments were prepared by step- 
wise solid-phase synthesis (12, 13). Bro- 
moacetyl (25) was used as the functional 
group at the NH,-terminus of the segment 
HIV-1 PR(53-99). In the other half of the enzyme 
molecule, HIV-1 PR(1-51), the Glpl was re- 
placed by a Gly a-thiocarboxylic acid (that is, 
-NHCH,COSH) (7). HIV-1 PR(1-50,Gly- 
aCOSH) was reacted with [BrCH,C0(53- 
99)lHIV-1 PR to yield [(NHCH,COSCH,- 
C0)51-52]HIV-1 PR 99-aa monomer. The boxed 
area represents the chemical structure of the 
thioester analog of the peptide bond Gly5'- 
Glp2 at the site where the ligation occurred. 

PR occurred rapidly. Extensive product for- 
mation could already be detected after 45 
min, and the reaction was essentially com- 
plete after 3 hours (Fig. 3). The ligated 
product showed the same retention time on 
a C18 reversed-phase column as native 
H IV -1  PR. The product peak was collected 
and characterized by ion-spray M S  (Fig. 5); 
the protonated molecular ions had the mass 
expected for the HIV-1  PR analog with a 
thioester bond. The ([NHCH2COSCH2- 
~ 0 1 5 1 - 5 2 ~ b ~ 6 7 . 9 5  )HIV-l PR dimer showed 

the same specificity as the native enzyme in 
cleaving a synthetic peptide substrate ana- 
log of the GAG p24Jp15 processing site 
(1 8) (Fig. 4A). Quantitative comparison of 
enzymatic activity in a fluorogenic assay 
showed that this HIV-1 PR analog had the 

HIV-1 PR(1-50,Gly-aCOSH) 
Ligation product I I Bromoa~tyl(53-99)HIV-I PR 

t =3 hours 

I t 4 8  hours 

0.0 Retention time (min) 45.0 

Fig. 3. HPLC analysis of the reaction of HIV-1 
PR(1-50,Gly-aCOSH) with [BrCH,C0(53- 
99)lHIV-1 PR. Samples (2 ILI) of the ligation 
reaction mixture (15) were taken at t = 0, 45 
min, 3 hours, and 48 hours and analyzed irn- 
mediately. The progress of the ligation was 
followed by reversed-phase HPLC on a Vydac 
C,, column with a linear gradient of 30 to 60% 
buffer B (90% acetonitrile/0.09% trifluoroacetic 
acid) in buffer A (0.1% trifluoroacetic acid) over 
30 rnin. The flow rate was 1 mllmin, and absor- 
bance was monitored at 21 4 nm. 

same specific activity as the native enzyme 
(Fig. 4B). 

The fu l l  activity o f  the backbone- 
engineered ( [ N H C H ~ C O S C H ~ C O ] ~ ~ - ~ ~ -  
A b a 6 7 , 9 5 ) ~ ~ ~ - 1  PR enzyme analog can be 
explained in terms of the high-resolution 
x-ray structure of the [Aba67*95,167,195]~~~-  
1 PR complexed wi th a substrate-based 
inhibitor (Fig. 1, A and B). The peptide 

bond between ~ l ~ ~ ~ - ~ l ~ ~ ~  i s  o n  the outside 
of the flaps, at the surface of the protein and 
away from the substrate. Although the NH 
of Gly5' (which in this analog has been 
replaced by a sulfur atom) i s  potentially 
involved in a hydrogen bond to the carbon- 
y l  oxygen of Gly49 across the P turn at the end 
of the flap, the N . . - 0 distance observed 
(3.32 to 3.37 A) i s  significantly greater than i s  

Fig. 4. Enzymatic activity of the product of the 
ligation reaction between HIV-1 PR(1-50,Gly- 
aCOSH) and [BrCH,C0(53-99)lHIV-1 PR. (A) - 
Specificity. The hexapeptide Ac-Thr-lle-Nle- $ 
Nle-Gln-Arg-amide (1 mglml), an analog of the p, 
p24Ip15 GAG viral processing site (a ) ,  was 
treated at pH 6.5 with an aliquot (taken at t = 3 
hours) of the ligation reaction mixture: upper 8 trace, peptide substrate before treatment: and n 

A Substrate 

Impurities s 
Cleavage products 

1 
/ I, impurities 

lower trace; after 15-min treatment. Cleavage a [ h t 
products were separated by reversed-phase 
HPLC (Vydac C,, column; linear gradient of 0 I 

to 40% buffer B (90% acetonitrile/0.09% trifluo- 5.0 Retention time (min) 23.0 

roacetic acid) inbuffer A (0.1% trifluoroacetic B - 
acid) over 20 rnin; flow rate, 1 mllrnin; absor- 
bance monitored at 214 nm). Peptide products 5000 
were identified by ion spray MS as (H)-Nle-Gln- 
Arg-amide (early eluting) and Ac-Thr-lle-Nle- .g 4000 - 
(OH) (late eluting). Minor impurities in the hexa- 
peptide substrate were not cleaved and were 
revealed in the course of the reaction. (B) Kinet- 
ics. Aliquots of the reaction mixture taken at 45 
min (dotted squares), 3 hours (diamonds), and 
48 hours (open squares) were used in a fluoro- 
genic assay (26). Data points shown were read 
from continuous chart recorder tracings. Quan- 
titative comparison of ([NHCH,COSCH,C0]5'-52- 
Aba67,95)HIV-1 PR dirner with an equal amount of 0 1 2 3 
(Aba67,95,167,195)HIV-l PR showed identical activ- Time (min) 
ities. Neither segment alone showed any activity 
(detection limit, <1 part in 1000). 
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typical for strong amide-N to carbonyl-O hy­
drogen bonds. In any event, other interac­
tions in this region are clearly predominant in 
light of the observed full activity of the back­
bone-engineered HIV-1 PR analog. A similar 
approach could be used to systematically re­
place peptide bonds around the tip of the flap, 
where interactions mediated by peptide bonds 
appear to be functionally important, and 
along the underside of the flaps where func­
tionally important hydrogen-bonding interac­
tions with the substrate have been proposed 
(Fig. 1, A and B). Results of such experiments 
may help illuminate the quantitative contri­
bution of interactions proposed based on crys­
tal-structure data (10). 

The chemical ligation reaction occurred 

100 

75 

50 

12+1 

^ 25 

f o 

11+ 
980 1 0 + 

1078 

iiUJjju 

9+ 
1198 

7+ 
1540 

6+ 
1796 

8+ 
1347 

5+ 
2154 

1000 1250 1500 
m/z 

B 

100 

75] 

50 

25 

1750 2000 

10,769 

10,000 10,250 10,500 10,750 11,000 

Molecular mass (daltons) 

Fig. 5. Covalent characterization of the liga­
tion product. (A) Ion spray mass spectrum of 
the HPLC-purif ied ( [NHCH 2 C0SCH 2 C0] 5 1 - 5 2 -
Aba6 7 , 9 5)HIV-1 PR 99-aa monomer formed by 
ligation of HIV-1 PR(1-50,Gly-aCOSH) and 
[BrCH2CO(53-99)]HIV-1 PR. The labeled peaks 
represent a single molecular species differing 
in the number of excess protons. The observed 
molecular mass of the ligated product is 
10,768.6 ± 1.1 daltons [Calculated: (monoiso-
topic) 10,763.9 daltons; (average) 10,770.8 
daltons]. (B) Deconvoluted mass spectrum in 
which the raw data shown in (A) have been 
reduced to a single charge state. All data 
points in (A) were included in the calculation. 
No mathematical filtering was performed. The 
mass region 10 to 11 kD is shown for clarity. 
The ligated enzyme analog molecule is at 
10,769 daltons. The minor peak toward low 
mass is - 1 8 daltons and is presumably the 
sum of all dehydration products of the target 
polypeptide chain arising from the sum of trace 
impurities present in the purified segments 
used in the ligation reaction. The high-mass 
minor components are + 1 6 and +32 daltons 
and may be the result of atmospheric oxidation 
of the methionines. 

rapidly and in high yield, giving a well-
defined product (19). Purification of the syn­
thetic protein in one step by HPLC was also 
straightforward. The segment ligation synthe­
sis reported here was repeated several times 
and gave the same results. Typically, a com­
plete synthesis of the HIV-1 PR analog by 
chemical segment ligation (including moni­
toring the reaction by HPLC, product isola­
tion, assay of enzymatic activity, as well as the 
characterization of the ligation product by 
MS) could be performed in less than 1 day. 

The chemical ligation approach is a 
versatile one. By replacing bromoacetic 
acid (an isosteric replacement for a Gly 
residue) with another a-bromo carboxylic 
acid (20), analogs of other amino acids can 
be introduced. Allowance must be made for 
the inversion of configuration that occurs in 
the SN2 ligation reaction. Similarly, the 
Gly-aCOSH residue on the other side of 
the ligation site can be replaced by any 
amino acid simply by starting the synthesis 
of the corresponding peptide on an amino-
methyl resin loaded with the corresponding 
4- [ (Boc-amino acyl) thiobenzyl] -phenoxy-
acetic acid (21). In addition, nonpeptidic 
elements bearing SH groups can be intro­
duced to replace natural amino acids at the 
ligation site. Other combinations of unique, 
mutually reactive moieties (22) can also be 
used in similar chemical ligations of unpro­
tected large synthetic peptide segments. 

This selective chemical ligation approach 
to the preparation of protein analogs from 
large synthetic peptide segments offers a 
twofold advantage: improved syntheses and 
concomitant introduction of new structural 
features into the protein. In addition to the 
backbone engineering described in this re­
port, this approach provides an efficient way 
to make a number of interesting and impor­
tant modifications of protein structure, in­
cluding the stereochemical engineering of 
proteins with D-amino acids, the incorpo­
ration of fixed elements of 3-D structure into 
the protein molecule (6), and the prepara­
tion by head-to-head condensation of novel 
species such as protein molecules with two 
amino- or carboxyl-terminals. The approach 
is also readily adapted to the synthesis of 
hybrid protein-nonprotein macromolecules. 
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Cloning and Characterization of Inducible Nitric phages, hepatOcytes, smooth cells, 
fibroblasts, mesangial cells, and some tumor 

Oxide Synthase from Mouse Macrophages cells begin to produce NO several hours 
after exDosure ;o cvtokines and microbial 
products'. These cells then release large 

Qiao-wen Xie, Hearn J. Cho, Jimmy Calaycay, quantities of NO for many hours by a 
Richard A. Mumford, Kristine M. Swiderek, Terry D. Lee, 

Aihao Ding, Tiffany Troso, Carl Nathan* 
Nitric oxide (NO) conveys a variety of messages between cells, including signals for 
vasorelaxation, neurotransmission, and cytotoxicity. In some endothelial cells and neu- 
rons, a constitutive NO synthase is activated transiently by agonists that elevate intra- 
cellular calcium concentrations and promote the binding of calmodulin. In contrast, in 
macrophages, NO synthase activity appears slowly after exposure of the cells to cytokines 
and bacterial products, is sustained, and functions independently of calcium and cal- 
modulin. A monospecific antibody was used to clone complementary DNA that encoded 
two isoforms of NO synthase from immunologically activated mouse macrophages. Liquid 
chromatography-mass spectrometry was used to confirm most of the amino acid se- 
quence. Macrophage NO synthase differs extensively from cerebellar NO synthase. The 
macrophage enzyme is immunologically induced at the transcriptional level and closely 
resembles the enzyme in cytokine-treated tumor cells and inflammatory neutrophils. 

Nitric oxide (NO) is a short-lived, gaseous 
radical that is the smallest biosynthetically 
derived secretory product of mammalian 
cells. Through oxidation of thiols, hemes, 
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Fe-S clusters, and other nonheme iron pros- 
thetic groups, NO regulates enzymes, alters 
vascular tone, platelet function, inflamma- 
tion, neurotransmission, and lymphocyte 
proliferation, and mediates some of the 
cytotoxic action of murine macrophages 
against tumor cells and microbes ( 1 ) .  

In endothelium and neurons, transient 
synthesis of small amounts of NO is rapidly 
triggered by agonists that elevate Ca2+. 
Increased intracellular Ca2+ alters the con- 
formation of calmodulin, which binds to 
nitric oxide synthase (NOS) to activate 
NO production (2, 3). In contrast, macro- 

Fig. 1 .  Cloned iNOS cUNAs. cDNAs were 
cloned after immunoscreening with antibody to 
iNOS (14) and sequenced where indicated by 
the thick bars. Thin bars, regions not se- 
quenced. Polyadenylated tails are not shown. 
The sequencing strategy was similar in each 
case and is illustrated for clone A1 by horizontal 
arrows. Clones Al, A2, and B1 included the 
ATG initiation codon within a consensus initia- 
tion sequence (GACATGG) (15). The dashed 
vertical line divides the nucleotide sequence 
into the region (base pairs 1 to 3591, numbered 
for clone Al) in which it was identical for all 
clones [except at position 2367 (vertical arrow)] 
and the remaining region (base pair 3592 to 
polyadenylate tails), where the A clones shared 
one sequence and the B clones shared an 
entirely different sequence. Black bar at top, 
longest coding region; horizontal dashes, dele- 
tions in the cDNA. GenBank accession number 
M87039. 
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