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Balancing Selection at Allozyme Loci in Oysters: 
Implications from Nuclear RFLPs 

Stephen A. Karl* and John C. Aviset 
Population genetic analyses that depend on the assumption of neutrality for allozyme 
markers are used widely. Restriction fragment length polymorphisms in nuclear DNA of the 
American oyster evidence a pronounced population subdivision concordant with mito- 
chondrial DNA. This finding contrasts with a geographic uniformity in allozyme frequencies 
previously thought to reflect high gene flow mediated by the pelagic gametes and larvae. 
The discordance likely is due to selection on protein electrophoretic characters that bal- 
ances allozyme frequencies in the face of severe constraints to gene flow. These results 
raise a cautionary note for studies that rely on assumptions of neutrality for allozyme 
markers. 

Starch gel electrophoresis of soluble pro- 
teins has been the workhorse techniaue of 
population genetics for nearly 30 years. 
Although several studies have indicated - 
that natural selection acts on particular 
allozyme loci (1-6), the working hypothesis 
of most population genetic applications has 
been that the majority of enzyme (as well as 
DNA) polymorphisms evolve as predicted 
by neutrality theory and can be interpreted 
accordingly for purposes of estimating pop- 
ulation structure, gene flow, and genetic 
relatedness. Previous studies of the Ameri- 
can oyster (Crassostrea virginica) in the 

Department of Genetics, University of Georgia, Ath- 
ens, GA 30602. 

southeastern United States revealed a re- 
markable contradiction between data from 
biparentally inherited allozyme loci, indi- 
cating little or no population subdivision 
(7), and maternally transmitted mitochon- 
drial DNA (mtDNA) , demonstrating a 
sharp genetic discontinuity between oyster 
populations from Atlantic Coast in contrast 
to Gulf of Mexico locales (8). Similar 
mtDNA surveys of a variety of coastal- 
restricted taxa, including horseshoe crabs, 
toadfish, black sea bass, diamondback ter- 
rapins, and seaside sparrows (9), demon- 
strate phylogenetic discontinuities between 
Atlantic and Gulf populations of these spe- 
cies, suggesting that similar historical pro- 
cesses are involved and that these biogeo- 
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Genetics, Rutgers University, Post Office Box 231, 
New Brunswick. NJ 08903. ican oysters as well. 
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for the apparent inconsistency between nu- 
clear and cytoplasmic genetic structures in 
oysters. The discrepancy could be due to 
biological or demographic factors: (i) a 
higher rate of interpopulation gene flow 
mediated by sperm rather than by eggs; (ii) 
directional selection favoring different 
mtDNA haplotypes in the twouregions; or 
(iii) a smaller effective population size for 
mtDNA that resulted in a faster rate of 
lineage sorting from the ancestral gene pool 
than was the case for most nuclear alleles 
(1 0). Alternatively, the apparent contra- 
diction between the mitochondria1 and nu- 
clear genomes could be due to the following 
factors: (i) hidden variation within electro- 

\ ,  

morph classes (cryptic allozymes) , such that 
undetected allozyme differences truly distin- 
guish Atlantic and Gulf populations; (ii) a 
slower rate of evolutionary change in allo- 
zyme frequencies; ?r (iii) balancing selec- 
tion at multiple allozyme loci. 

To distinguish between these two classes 
of competing hypotheses, we report here an 
analysis of restriction fragment length poly- 
morphism (RFLP) in single-copy nuclear 
(scn) DNA. We constructed primers suit- 
able for amplification of DNA by the poly- 
merase chain reaction (PCR) for each of 
four anonymous nuclear loci (1 I), follow- 
ing a procedure described elsewhere (1 2). 
Nuclear DNA. isolated from each of 277 . . 

oysters collected at nine locations between 
Massachusetts and Louisiana (1 3), was am- 
plified with the. use of these primers (14). 
The amplified products were digested with 
restriction enzymes (15), and four restric- 
tion site polymorphisms interpretable as 
unlinked Mendelian variants at single genes 
were identified (1 6). 

Restriction site polymorphisms from all 
four scn loci reveal significant shifts in 
allele frequency between the Gulf of Mex- 
ico and Atlantic collections of American 
ovsters. with the differences between these 
two geographic regions generally much 
greater than those within either area (Table 
1). The pattern contrasts strikingly with 
the geographic uniformity evidenced by the 
allozyme polymorphisms (Fig. 1). The pro- 
nounced genetic break in scnDNA appears 
along the eastern coast of Florida. as was 
true ?or the mtDNA phylogeographic break 
in oysters and other maritime species (8, 9). 
The sample from Stuart, Florida, a geo- 
graphically intermediate locale, generally 
exhibited transitional allele frequencies. A 
clustering of genetic distances based on the 
scnDNA allele frequencies further docu- 
ments the dramatic population genetic sep- 
aration between the Atlantic and the Gulf 
of Mexico oysters, the agreement with the 
mtDNA break, and the apparent contrast 
with the allozyme information (Fig. 2). 

The similar pattern of geographic popu- 
lation subdivision registered in mtDNA and 
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scnDNA (Figs. 1 and 2) indicates that 
biological factors differentially affecting mi- 
tochondrial and nuclear genomes in oysters 
probably cannot account for the original 
discrepancy between the mtDNA and allo- 
zyme data sets. Thus, the geographic uni- 
formity in allozymes is not likely due to 
greater dispersal of male gametes or to the 
slow rate of evolutionarv sorting of nuclear - 
lineages from an ancestral gene pool, be- 
cause effects of such demographic processes 
should also be reflected in the distributions 
of scnDNA alleles. Neither is the popula- 
tion genetic break in mtDNA attributable 
solely to directional selection on mtDNA, 
unless the kinds of selection pressures favor- 
ing different mtDNA haplotypes in the 
Atlantic versus the Gulf extend to a signif- 
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Fig. 1. Frequencies of the most common alleles 
at polymorphic allozyme loci (A) and DNA loci 
(8) along the coastline transect running from 
Massachusetts to Louisiana. Locations are ab- 
breviated as in (13). Allozyme data from five 
loci were taken from (7) for collection sites near 
those used in the current study and are repre- 
sentative of the geographic uniformity also ex- 
hibited by six other highly polymorphic allo- 
zyme systems (7) .  Allozyme loci are as follows: 
Estl , esterase; Lapl, leucine aminopeptidase; 
GPgd, 6-phosphogluconate dehydrogenase; 
Pgi, phosphoglucose isomerase; and Pgm, 
phosphoglucomutase. DNA data are for fre- 
quencies of the two major mtDNA clades 
(heavy line) as reported in (8) and of the most 
common alleles at each of four scnDNA loci 
(CV-7, CV-19, CV-32, and CV-195) (present 
study) 

icant fraction of scnDNA genes as well. 
The case against contemporary directional 
selection itself being the sole force govern- 
ing DNA genotypic distributions is 
strengthened further by the observation 

A 
Gulf 

0.03 0.02 0.01 0.00 
Sequence divergence 

1 kz 1 Atlantic 

0.5 0.4 0.3 0.2 0.1 0.0 

Genetic distance 

!:I Atlantic 

that the large number of mtDNA mutation- 
al differences accumulated between the At- 
lantic and the Gulf clades must have re- 
quired a considerable period of historical 
population separation (8). Finally, it is 
difficult to imagine a selective pressure that 
could have molded in such consistent fash- 
ion the mtDNA phylogeographic partitions 
across species as different as the fishes, 
reptile, bird, arthropod, and bivalve mol- 
lusk that were assayed (9). 

We are left with the conclusion that the 
original discrepancy in population genetic 
structure between the nuclear and cytoplas- 
mic genomes of oysters most likely results 
from some nonrepresentative evolutionary 
genetic properties of the allozyme systems. 
Balancing selection on protein coding loci 
appears the most likely explanation. Genet- 
icists working with mollusks have long been 
intrigued by strong associations observed 
between higher multilocus heterozygosity at 
allozyme loci and presumed components of 

Fig. 2. Dendrograms based on mtDNA (8) (A), 
scnDNA (4 polymorphic loci, present study) 
(B), and allozymes (18 mostly polymorphic loci) 
(7) (C) in American oysters from the southeast- 
ern United States. Genetic distances were cal- 
culated as Nei's (24) unbiased estimator (for 
scnDNA and allozyme sample allele frequen- 
cies) or were taken from (8) for mtDNA haplo- 
types. Clustering of distance matrices was per- 
formed by the unweighted pair group method 
with arithmetic means. Location abbreviations 

Genetic distance are as in (13). 

Table 1. Frequencies ( f ) ,  sample sizes (n) (differences in sample sizes were due to the inability to 
amplify DNA from some of the individuals with all of the primer pairs), and significance levels for 
heterogeneity x2 [P(x2)] for the most common Atlantic allele in each population (13). A two-tailed 
Student's t test on the arcsine transformed frequencies was used to compute significance values 
(P) for the difference in mean allele frequency between Gulf and Atlantic samples. Significant 
differences also were found with a nonparametric Mann-Whitney test. The FL2 population was 
excluded from the analysis because it represents a genetically mixed mtDNA group and may be of 
hybrid origin. 

- - 

Locus 
- -- 

Location CV-7 CV-19 CV-32 CV-195 

MA 
SC 
G A 
FLl 
FL2 
Mean + SD 

F L3 
F L4 
F L5 
LA 
Mean + SD 
P(x2) 
P (Gulf 

iersus Atlantic) 

Atlantic 
0.66 (1 6) 
0.70 (23) 
0.63 (30) 
0.72 (29) 
0.51 (27) 
0.620 + 0.043 
0.741 

Gulf 
0.61 (27) 
0.33 (38) 
0.53 (1 6) 
0.41 (26) 
0.470 2 0.124 
0.006 
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organismal fitness (for example, metabolic 
efficiency, growth rate) (2, 17-21) and 
have concluded that allozyme polymor- 
phism~ themselves underlie physiological 
energetic differences by virtue of their in- 
fluence on metabolite flux through central 
biochemical pathways (5, 22). Such bal- 
ancing selection on allozyme polymor- 
phism~ could counter the influence of ge- 
netic drift, even in the face of population 
subdivision due to historical demographic 
events or contemporary restrictions on gene 
flow that are reflected in geographically 
divergent frequencies of neutral genetic 
markers. Hidden molecular variation that 
would also distinguish Atlantic and Gulf 
oysters may exist at the allozyme loci, but 
this possibility can in a sense be subsumed 
under the hypothesis of balancing selec- 
tion, provided that the selection operates 
with respect to the observed electromorph 
classes instead of the level of the hidden 
variation. A slower rate of evolution for 
allozymes as compared to scnRFLPs can also 
be eliminated, because both cases in oysters 
involve the population level sorting of an- 
cestral polymorphisms that affect both 
equally. 

Regardless of the specific underlying 
causes, the heterogeneity in geographic pat- 
tern among allozyme, scnDNA, and 
mtDNA data sets cannot be accommodated 
under a single evolutionary model involv- 
ing either neutrality or balancing selection 
(23). In this example where an allozyme 
survey had suggested high levels of gene 
flow, dramatic population genetic separa- 
tion nonetheless was present in both the 
nuclear and the cytoplasmic genomes. Re- 
sults of this study emphasize the need for 
caution in inferring population genetic 
structure and gene flowfrom any single class 
of genetic markers. 
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Identification of ras Oncogene Mutations in the 
Stool of Patients with Curable Colorectal Tumors 

David Sidransky, Takashi Tokino, Stanley R. Hamilton, 
Kenneth W. Kinzler, Bernard Levin, Philip Frost, Bert Vogelstein* 
Colorectal (CR) tumors are usually curable if detected before metastasis. Because genetic 
alterations are associated with the development of these tumors, mutant genes may be 
found in the stool of individuals with CR neoplasms. The stools of nine patients whose 
tumors contained mutations of K-ras were analyzed. In eight of the nine cases, the ras 
mutations were detectable in DNA purified from the stool. These patients included those 
with benign and malignant neoplasms from proximal and distal colonic epithelium. Thus, 
colorectal tumors can be detected by a noninvasive method based on the molecular 
pathogenesis of the disease. 

Colorectal cancer is the third most com- will die from colorectal cancer this year (1). 
mon malignancy in the world, with Whereas individuals with advanced disease 
570,000 new cases expected in 1992. In the have a poor prognosis, colorectal tumors 
United States alone, over 60,000 people diagnosed at an earlier stage can usually be 
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cured by surgical or colonoscopic excision 
(2). Methods to detect surgically resectable 
tumors could therefore reduce deaths from 
this disease (3). The only noninvasive test 
for such a purpose involves testing stool for 
blood, but the appearance of hemoglobin in 
stool is not specific for neoplasia (4, 5). 

Tumor-derived mutations in oncogenes 
and suppressor genes potentially provide 
more specific markers (6). Mutations in 
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