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Molecular Cloning of the Interleukin- 1 P 
Converting Enzyme 

Douglas Pat Cerretti,* Carl J. Kozlosky, Bruce Mosley, 
Nicole Nelson, Kirk Van Ness, Teresa A. Greenstreet, 

Carl J. March, Shirley R. Kronheim, Teresa Druck, 
Linda A. Cannizzaro, Kay Huebner, Roy A. Black 

Interleukin-1 p (IL-1 p) mediates a wide range of immune and inflammatory responses. The 
active cytokine is generated by proteolytic cleavage of an inactive precursor. A comple- 
mentary DNA encoding a protease that carries out this cleavage has been cloned. Re- 
combinant expression in COS-7 cells enabled the cells to process precursor IL-1 p to the 
mature form. Sequence analysis indicated that the enzyme itself may undergo proteolytic 
processing. The gene encoding the protease was mapped to chromosomal band 11 q23, 
a site frequently involved in rearrangement in human cancers. 

T h e  cytokine interleukin-1 (IL-1) has 
been implicated in inflammation, septic 
shock, and other physiological situations, 
including wound healing and the growth of 
certain leukemias ( I ) .  There are two dis- 
tantly related forms of IL-1 ( 2 ) ,  IL-la and 
IL-1P; the latter is the predominant species 
released by monocytes. Most efforts to de- 
velop an IL-1 antagonist have focused on 
inhibition of binding to the IL-1 receptor, 
which mediates biological resuonses to both - 
forms of the cytokine (3). In some circum- 
stances. it mav be desirable to discriminate 
between the two forms of IL-1; an altema- 
tive approach specific to IL-1 P involves the 
inhibition of the protease required for its 
biosynthesis. This protease (the IL- 1 P con- 

verting enzyme or convertase) cleaves the 
inactive 3 1-kD precursor of IL-1 P between 
Asp116 and Ala117, releasing the 153 
COOH-terminal amino acids that consti- 
tute the mature cytokine ( 4 4 ) .  The criti- 
cal function of this protease is indicated by 
the recent finding that cowpox virus en- 
codes a highly specific inhibitor of the 
enzyme; this inhibitor is necessary for the 
virus to suppress the host inflammatory 
response (7). To pursue the study of this 
protease, we have cloned a cDNA that 
encodes a proteolytically active form of this 
converting enzyme. 

The IL-1P converting enzyme was puri- 
fied from the human acute monocytic leu- 
kemia cell line THP-1, and 20 amino acids 
from the NH,-terminus were determined 

D. P. Cerretti, C. J. Kozlosky, B. Mosley, N. Nelson, K. (Fig. (8). The convertase was 
Van Ness, T. A. Greenstreet, C. J. March, S. R, isolated in three stages. First, single-strand- 
Kronheim, R. A. Black, lmmunex Corporation, 51 Uni- ed cDNA prepared from THp-1 cells was 
versity Street, Seattle, WA 98101. 
T. Druck, L. A. Cannizzaro, K. Huebner, Jefferson amp1ified by polymerase chain 
Cancer Institute, Thomas Jefferson University, Phila- (PCR) with degenerate oligonucleotide 
delphia, PA 19140.  rimers based on the NH,-terminal se- 
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Fig. 1. Deduced amino acid sequence (23) of 
the human 11-1 p converting enzyme encoded 
by the cDNA inserts plbp, p48, and p214 (S 
1 1 ). The DNA sequence has been submitted to 
GenBank under accession number M87507. 
Amino acids determined by sequence analysis 
of the purified protein are underlined (8). 

clone that encoded the 16 NH2-terminal 
amino acids of the ~urified protease. Next, 
we used 3'-anchored PCR (10) to isolate a 
cDNA of -1000 bp (plbp) (Fig. 1). This 
clone encoded 285 amino acids, including 
all of the residues determined by protein 
sequencing (8). Finally, a probe derived 
from the anchored PCR clone was used to 
screen a cDNA library prepared from hu- 
man peripheral blood neutrophils (I I). 
This action resulted in the isolation of two 
clones, p48 and p214, with inserts of 1366 
and 1359 bp, respectively. 

As deduced from these clones, the IL l  $ 
wnvertase cDNA is 1373 bp in length, 
including a stretch of adenine (A) residues 
corresponding to the polyadenylated 
[poly(A)+] tail of the rnRNA. These A 
residues are   receded by two polyadenyla- 
tion signals (AATAAA) at 1316 and 1335 
bp. The sequence has an open reading 
frame (OW) encoding 404 amino acids 
(Fig. I), starting with an initiator methio- 
nine codon at nucleotide (nt) 18 and end- 
ing with a termination codon at nt 1230 
(12). Initiation of translation wuld also 
begin with an in-frame methionine codon 
at nt 66. Both of these methionine codons 
have consensus Kozak translation initiation 
sequences (1 3). The NH2-terminus of the 
purified protein corresponds to ~sn'~O. 

To confirm that the protein encoded by 
these cDNAs can convert precursor ILl$ 
to the mature form, we inserted cDNA 
from p48 into a mammalian expression 
vector and wtransfected it into COS-7 
cells with a second mammalian expression 
plasmid that contained a cDNA encoding 
precursor IL-I$. After 2 days, cells were 

labeled with 35S and both precursor and 
mature IL-l$ were immunoprecipitated 
from cell lysates and analyzed by SDS- 
polyacrylamide gel electrophoresis (SDS- 
PAGE) followed by autoradiography (1 4). 
The COS-7 cells p r d  precursor IL-l$ 
to the mature form when they were wtrans- 
fected with a plasmid encoding IL-1$ con- 
vertase, but not if they were cotransfected 
with wntrol plasmids (Fig. 2A). Cells 
transfected with a plasmid encoding a form 
of the convertase that lacked the first 119 
amino acids of the ORF were also able to 
process precursor IL-l$ to the mature form. 
To ensure that the processed form of IL-lp 
began with Ala117, we cotransfected COS-7 
cells as described above, except that the 
cells were labeled with ~~~l leucine ,  and 
processed IL-1$ was radiosequenced (1 5). 
Peak counts of tritium were found in cycles 
6, 10, and 18, which corresponded to the 
positions of leucine residues in authentic 
IL-l$ with an NH2-terminus of Ma'" (Fig. 
2B). 

Analysis of the amino acid sequence 
encoded by the convertase cDNA showed 
no similarity to any known protein (Gen- 
Bank, release 70.0). Because its inhibitor 
sensitivity suggests that the wnvertase is a 
cysteine protease (4), we focused particular 
attention on areas around cysteine and 
histidine residues that form the active site 
of cysteine proteases. We found no similar- 
ity to any known cysteine proteases or to 
any proteases of the other mechanistic 
classes. Hydrophobicity analysis showed no 
lengthy hydrophobic domains, consistent 
with the cytoplasmic location of the prote- 
ase. Because the NHz-terminus of the en- 
zyme purified from THP- 1 cells corresponds 
to AsnlZ0 (Fig. I), and the molecular size of 
the purified convertase is 22 kD as deter- 
mined by SDS-PAGE (8), it appears that 
the protease undergoes both NH2-terminal 
and COOH-terminal processing. It is pos- 
sible that processing is autocatalytic be- 
cause aspartic acid, the primary determi- 
nant of the substrate spedcity of the 
convertase (16), is at positions 119 and 
297. Cleavage at these sites could yield the 
form of the protein purified previously (8). 

Although we have demonstrated that 
the 119 NH2-terminal amino acids are not 
required for activity in transfected COS-7 
cells (Fig. 2A), the function of the COOH- 
terminal region is less clear. Plasmid con- 
structions that delete portions of the 
COOH-terminal region as well as the 119 
NH2-terminal amino acids yielded proteins 
without detectable processing activity (1 7). 
The importance of the COOH-terminal 
domain supported by analysis of human 
and murine wnvertase cDNAs (1 8), which 
have a 62% amino acid identity; the 
COOH-terminal domains have an 80% 
identity. The COOH-terminal domain 

wuld be required for proper folding of the 
active site, possibly as a second subunit. 

We performed Northern (RNA) blot 
analysis with a variety of RNA preparations 
to investigate the expression of the IL-l$ 
convertase gene. Transcripts of -2500, 
-1900, and -500 nt were detected in 
THP-1 cells; the 1900-nt transcript was the 
most abundant (Fig. 3A). The cDNAs that 
we have isolated probably correspond to 
this transcript. The convertase mRNA was 
detected in a variety of cells including 
peripheral blood monocytes, peripheral 
blood lymphocytes, peripheral blood neu- 
trophils, resting and activated peripheral 
blood T lymphocytes, placenta, and the B 

6 pro IL-1 fj 

18.4-- , mature 
11-1 f3 

14.3- 

~b k Ib 1 5  
Number ol cyder 

Fig. 2. Recombinant expression of 11-1s con- 
vertase. (A) Autorad'ogram of proteins imrnu- 
noprecipitated from transfected COS-7 cells 
with antisera to 11-1 p. COS-7 cells were trans- 
fected with the follawing plasmids (5 a): lane 
1, precursor IL-lp/CAV and lbp/CAV; lane 2, 
precursor 11-1 p/CAV and FLl bpICAV; lane 3, 
precursor IL-1 WCAV only; lane 4. CAV (empty 
vector); lane 5, 1 bp/CAV only. Two days after 
transfection, cells were labeled, and proteins 
were immunoprecipitated with an IL-1 wpecif- 
ic antiserum and subjected to SDS-PAGE be- 
fore autoradiography (14). The locations of 
precursor 11-1 p (pro 11-1 p) and mature 11-1s 
are indicated. Molecular size standards in kilo- 
daltons are indicated to the left. (B) Rad'iose- 
quencing of the processed 11-1 p protein from 
transfected COS-7 cells. Cells were transfected 
as described for lane 2 in (A) except that 
proteins were labeled with IjHIleucine. The 
processed 11-1 p protein was purified and radio- 
sequenced as described (15). The data shown 
are representative of two experiments. The arni- 
no acid sequence at the top is the NH,-termi- 
nus of mature human 11-1s (2, 23). 
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Fig. 3. Northern blots hybridized with a probe 
for human 11-1 8 convetlase (A) or human 11-1 8 
(B). Filters contain human poly(A)+ RNA (2.5 
pg) except for neutrophils and HepG2, for 
which total RNA was used (2.5 pg). Lane 1, 
peripheral blood monocytes; lane 2, peripheral 
blood lymphocytes; lane 3, THP-1; lane 4, pe- 
ripheral blood neutrophils; lane 5, placenta; 
lane 6, HepG2; lane 7, CB23; lane 8, Raji; lane 
9, resting peripheral blood T cells; lane 10, 
activated peripheral blood T cells. The cell lines 
and the methods for RNA isolation and North- 
ern blot analysis were as described (25). An- 
tisense probes were used for human 11-18 
convertase and human 11-18 (Promega). The 
positions of 18s and 28s ribosomal RNA are 
indicated to the left. 

lymphoblastoid line CB23. Another B lym- 
phoblastoid line, Raji, as well as HepG2 
cells had no detectable convertase mRNA. 
Reprobing the blot for IL- 1 $ mRNA (Fig. 
3B) showed that only peripheral blood 
monocytes and THP-1 cells had detectable 
amounts of this mRNA. The tissue distri- 
bution of the convertase suggests that the 
enzyme may have other substrates in addi- 
tion to precursor IL- 1 $. 

Fig. 4. Distribution of labeled sites on chromo- 
some 11 from normal metaphase peripheral 
blood lymphocytes that were hybridized with a 
3H-labeled 11-18 convertase probe. A total of 
226 chromosomally localized grains were 
scored over 104 metaphases (20). Each dot 
represents two autoradiographic grains. Forty- 
two percent (95 out of 226) of grains localized 
in l l q  with no grain clusters in any other 
chromosome region. Sixty-six percent (63 out 
of 95) of the 11 q grains were over region 11 q13 
to 11q23.2, with the highest concentration of 
grains at 11q23.2. 

The IL-1$ convertase gene was located 
on chromosome 1 lq13-1 lq23 with South- 
em (DNA) blot analysis of rodent-human 
hybrids (1 9) and on chromosome 1 lq23 by 
in situ hybridization to normal human 
metaphase preparations (Fig. 4) (20). 
Chromosome band 1 lq23 is frequently in- 
volved in rearrangement in human cancers, 
including a number of leukemias and lym- 
phomas (21), and recent studies have im- 
plicated IL-l$ as an autocrine growth factor 
in certain acute and chronic myelocytic 
leukemias (221. The finding that the con- . , " 
vertase gene maps to band 1 lq23 raises the 
possibility that altered production of the 
protease contributes to some of these dis- 
ease states. 

The molecular cloning of a protease that 
generates active IL-I$ provides new insight 
into IL-1 biology and offers a new target for 
the development of therapeutic agents. The 
amino acid seauence confirms that the con- 
vertase is unrelated to any known protease, 
which increases the likelihood that specific 
inhibitors can be developed. 
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Balancing Selection at Allozyme Loci in Oysters: 
Implications from Nuclear RFLPs 

Stephen A. Karl* and John C. Aviset 
Population genetic analyses that depend on the assumption of neutrality for allozyme 
markers are used widely. Restriction fragment length polymorphisms in nuclear DNA of the 
American oyster evidence a pronounced population subdivision concordant with mito- 
chondrial DNA. This finding contrasts with a geographic uniformity in allozyme frequencies 
previously thought to reflect high gene flow mediated by the pelagic gametes and larvae. 
The discordance likely is due to selection on protein electrophoretic characters that bal- 
ances allozyme frequencies in the face of severe constraints to gene flow. These results 
raise a cautionary note for studies that rely on assumptions of neutrality for allozyme 
markers. 

Starch gel electrophoresis of soluble pro- 
teins has been the workhorse techniaue of 
population genetics for nearly 30 years. 
Although several studies have indicated - 
that natural selection acts on particular 
allozyme loci (1-6), the working hypothesis 
of most population genetic applications has 
been that the majority of enzyme (as well as 
DNA) polymorphisms evolve as predicted 
by neutrality theory and can be interpreted 
accordingly for purposes of estimating pop- 
ulation structure, gene flow, and genetic 
relatedness. Previous studies of the Ameri- 
can oyster (Crassostrea virginica) in the 

Department of Genetics, University of Georgia, Ath- 
ens, GA 30602. 

southeastern United States revealed a re- 
markable contradiction between data from 
biparentally inherited allozyme loci, indi- 
cating little or no population subdivision 
(7), and maternally transmitted mitochon- 
drial DNA (mtDNA) , demonstrating a 
sharp genetic discontinuity between oyster 
populations from Atlantic Coast in contrast 
to Gulf of Mexico locales (8). Similar 
mtDNA surveys of a variety of coastal- 
restricted taxa, including horseshoe crabs, 
toadfish, black sea bass, diamondback ter- 
rapins, and seaside sparrows (9), demon- 
strate phylogenetic discontinuities between 
Atlantic and Gulf populations of these spe- 
cies, suggesting that similar historical pro- 
cesses are involved and that these biogeo- 
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for the apparent inconsistency between nu- 
clear and cytoplasmic genetic structures in 
oysters. The discrepancy could be due to 
biological or demographic factors: (i) a 
higher rate of interpopulation gene flow 
mediated by sperm rather than by eggs; (ii) 
directional selection favoring different u 

mtDNA haplotypes in the two regions; or 
(iii) a smaller effective population size for 
mtDNA that resulted in a faster rate of 
lineage sorting from the ancestral gene pool 
than was the case for most nuclear alleles 
(1 0). Alternatively, the apparent contra- 
diction between the mitochondria1 and nu- 
clear genomes could be due to the following 
factors: (i) hidden variation within electro- ~, 

morph classes (cryptic allozymes) , such that 
undetected allozyme differences truly distin- 
guish Atlantic and Gulf populations; (ii) a 
slower rate of evolutionary change in allo- 
zyme frequencies; ?r (iii) balancing selec- 
tion at multiple allozyme loci. 

To distinguish between these two classes 
of competing hypotheses, we report here an 
analysis of restriction fragment length poly- 
morphism (RFLP) in single-copy nuclear 
(scn) DNA. We constructed primers suit- 
able for amplification of DNA by the poly- 
merase chain reaction (PCR) for each of 
four anonymous nuclear loci (1 I), follow- 
ing a procedure described elsewhere (1 2). 
Nuclear DNA. isolated from each of 277 . . 

oysters collected at nine locations between 
Massachusetts and Louisiana (1 3), was am- 
plified with the. use of these primers (14). 
The amplified products were digested with 
restriction enzymes (15), and four restric- 
tion site polymorphisms interpretable as 
unlinked Mendelian variants at single genes 
were identified (1 6). 

Restriction site polymorphisms from all 
four scn loci reveal significant shifts in 
allele frequency between the Gulf of Mex- 
ico and Atlantic collections of American 
ovsters. with the differences between these 
two geographic regions generally much 
greater than those within either area (Table 
1). The pattern contrasts strikingly with 
the geographic uniformity evidenced by the 
allozyme polymorphisms (Fig. 1). The pro- 
nounced genetic break in scnDNA appears 
along the eastern coast of Florida. as was 
true ?or the mtDNA phylogeographic break 
in oysters and other maritime species (8, 9). 
The sample from Stuart, Florida, a geo- 
graphically intermediate locale, generally 
exhibited transitional allele frequencies. A 
clustering of genetic distances based on the 
scnDNA allele frequencies further docu- 
ments the dramatic population genetic sep- 
aration between the Atlantic and the Gulf 
of Mexico oysters, the agreement with the 
mtDNA break, and the apparent contrast 
with the allozyme information (Fig. 2). 

The similar pattern of geographic popu- 
lation subdivision registered in mtDNA and 
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