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Competition for Overlapping Sites in the 
Regulatory Region of the Drosophila Gene Kruppel 

Michael Hoch, Nicole Gerwin, Heike Taubert, Herbert Jackle 
A 730-base pair element regulates expression of the Drosophila gap gene Kruppel (Kr) 
in response to the fly anterior morphogen bicoid (bcd). Two hormone receptor-like pro- 
teins, encoded by the genes knirps (kni) and tailless (tll), bind specifically to the element. 
In vitro, kni protein competes with the homeodomain-containing bcd protein in binding to 
a 16-base pair target sequence. In vivo experiments suggest that both kni and tll act as 
competitive repressors of bcd-mediated activation of Kr. These results suggest a mech- 
anism by which developmental genes can be regulated in response to an activating 
morphogen gradient antagonized by repressors. 

I n  vertebrates, hormone receptors are tran- 
scription factors involved in developmental 
processes, cell differentiation, and morpho- 
genetic events (1). They respond to extra- 
cellular ligands, including steroid hor- 
mones, vitamin D, or retinoic acid (1). In 
addition to having the common structure of 
the DNA-binding domain characterized by 
a pair of Cys-containing zinc fingers (2), 
these transcription factors share a varying 
degree of sequence similarity in the 
COOH-terminal ligand-binding domain 
(1). On the basis of sequence similarity, 
eight Drosophila genes have been grouped as 
putative members of this superfamily of 
nuclear hormone receptors (3). Two of 
them, tll (4) and kni (5, 6), are gap genes, 
which are the first genes in the segmenta- 
tion gene hierarchy to be expressed in 
Drosophila embryonic development (7). 
Consistent with their mutant phenotypes, 
kni and tll are exuressed in suatiallv restrict- 
ed domains along the anterior-posterior axis 
of the blastoderm embryo, specifying ab- 
dominal segments (4) and terminal pattern 
elements (6), respectively. Genetic analysis 
suggests that both genes act as negative 
regulators of a third gap gene, KT (8, 9), 
which is reauired for the formation of tho- 
rax and anterior abdominal segments (7, 
10). We show that kni and tll proteins 
interact with multiple specific sites within 
the 730-bp regulatory region (KT 730) of 
the KT gene (I I). This previously charac- 
terized Kr 730 element is controlled by the 
morphogenetic bcd protein (BCD) gradient 
(12) and is sufficient to direct correctly 
localized activation of a reuorter gene in the 

c7 

central domain of Kr gene expression in 
earlv blastoderm embwos (1 I). , , ,  

Using bacterially expressed kni protein 
(KNI) and the DNA binding region of tll 
protein [TLL(18 1-5 17)], we found, with in 
vitro footprinting (1 3), a single strong KNI 
binding site and seven TLL (18 1-5 17) bind- 
ing sites on the KT 730 element (Figs. 1 and 

Max-Planck-lnstitut fur Biophysikalische Chemie, 
Abteilung Molekulare Entwicklungsbiologie, Am Fass- 
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2). Palindromic or tandemly repeated se- 
quences, such as those observed with differ- 
ent vertebrate hormone receptors (1 4), 
were not observed in the KNI and 
TLL(18 1-5 17) consensus sequences (1 5). 

The binding sites of TLL and the KNI 
binding site overlap with previously detect- 
ed binding sites of the homeodomain bcd 
protein (BCD) (I I); KNI binds to one 
region and TLL binds to all regions protect- 
ed by BCD (Figs. 1 and 2). We analyzed the 
single BCD site overlapped by a KNI bind- 
ing site, a 16-bp sequence: 5'-ACTGAAC- 
TAAATCCGG-3'. KNI and BCD com- 
peted for binding to the 16-bp sequence in 
vitro. Increasing amounts of BCD compet- 
ed for the binding of KNI. Conversely, 
when increasing amounts of KNI were add- 
ed to a constant amount of BCD, BCD was 
replaced by KNI binding (15). These ex- 
periments demonstrate that each of the two 
proteins can bind but that their binding is 
mutually exclusive. 

To examine a possible functional inter- 
action of KNI and BCD with the 16-bp 
element in vivo, we transfected tissue cul- 
ture cells (16) with reporter gene constructs 
containing the bacterial chloramphenicol 
acetyltransferase (CAT) gene under the 
control of the 16-bp element (1 7). No 
effect on the basal level of CAT gene 
expression was observed when plasmid 
DNA that contained kni was co-trans- 
fected. In contrast, plasmid DNA that con- 
tained bcd caused a dosage-dependent in- 
crease in CAT expression (Fig. 3A), indi- 
cating that the 16-bp element mediated 
BCD-dependent activation of gene expres- 
sion. When KNI was introduced along with 
BCD (Fig. 3B), BCD-dependent CAT gene 
activation was suppressed in a manner re- 
sponsive to the dosage of KNI. KNI did not 
make the reporter gene inactivable (Fig. 
3C), but instead increased the amount of 
BCD necessary for activation. No repres- 
sion was observed when the DNA-binding 
domain of KNI was mutated such that the 
first Cys in the second zinc finger was 
replaced by a Leu residue. 
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G+A, Maxam-Gilbert sequencing 
(open bars), or BCD (hatched bar 

Fig. 2. KNI and TLL overlap 
of BCD binding sites. (A) 
Physical map of the Kr 730 
element (1 1 ), showing di- 
agnostic restriction sites: B, 
Bam HI; Ns, Nsi I; St, Stu I; 
and Nc, Nco I. Regions 
protected by BCD, KNI, 
and TLL(181-517), as re- 
vealed by footprinting ex- 
periments (see Fig. 1 A), are 
indicated as bars. One 
BCD binding site overlaps 
with the KNI binding site 

Fig. 1. DNA binding of KNI 
and TLL(181-5171 to the . - 

? ~r 730 element' show" 
U c 1 2 3 4  with deoxyribonuclease I 

n (DNase I) footprinting 

Jt (13). (A) A subfragment of 
the Kr 730 element (13) - - 
was incubated with 2 p i  1 (lanes 1 and 4 )  4 pg 
(lanes 2 and 5), or 9 pg 

6 (lanes 3 and 6) of bacterial 
extract containing TLL- 

I (181-517) (lanes 1 through 
3; T) or KNI (lanes 4 
through 6; K). In lane 7 
(labeled B), BCD footprints 

-a*-* (71) are shown for com- 
m * m - o  parison. Further increase 

of KNI or TLL(181-517) 
concentrations led to addi- 
tional, weak protection 

within the Kr 730 element. (B) Competitive binding of KNI 
and BCD to the 16-bp element in vitro. Binding sites for 
either KNI or BCD, but not both, were protected. A 
fragment containing six copies of the 16-bp element was 
used (17). Binding was observed only to the core of the 
16-bp sequence, not to the multimer junctions. Extracts of 
KNI- and BCD-expressing bacteria were mixed and then 
applied to the labeled DNA fragment (13). Lane 1, 4 pg 
of KNI extract; lane 2, 4 pg of KNI extract plus 1 pg of 
BCD extract; lane 3,4 pg of KNI extract plus 4 pg of BCD 
extract; lane 4, 4 pg of BCD extract. Binding sites shown 
in (A) and (8) were confirmed by fmtprinting experiments 
with the use of the complementary strand and of full- 
length TLL protein ( 13). For control reactions (labeled C), 
9-pg extracts of bacteria containing the T7 expression 
vector without t/I or kni coding sequences were used. 

reactions. Areas protected by TLL(181-517) (solid bars). KNI 
s) are numbered as in Fig. 2A. 

St ANc 

KNI , 
TU(1rn- I 

2 3  4 5 
I II sin 

(see also Fig. 1 B), whereas 193 f- 
TLL binding sites overlap 

A--pm- 

with all regions protected 257 + - 
- - - P T A  

by BCD. (B) Sequence of - 
the Kr 730 element, includ- 321 d +  

F ' l T m m T A M - M - P  
ina TLL. KNI. and BCD 
biGding .sites.. Solid lines ---- 385 
below the sequence refer 
to TLL binding sites; the 449 

A ~ T C ! A T M T F ~ - - U T - P T A V T A ~ ~ & T C T  

boxed sequence refers to 513 
the KNI binding site. AO~IV~-A--P 

Hatched lines underline the 577 
reported BCD binding sites TATP-PI*) 

quences, see (15). 

In order to see whether KNI could also 
act as a suppressor of BCD-dependent gene 
activation in the embryo, we placed the 
16-bp element upstream of a reporter gene 
construct that contains the coding se- 
quence of the bacterial lac2 gene (1 7). The 
resulting Kr 16-lacZ reporter gene construct 
was inserted into the Drosophila genome 
(1 8) , and the lac2 expression patterns were 
monitored in transgenic embryos (1 9) (Fig. 
4). No lac2 expression was observed in 
embryos lacking BCD (20). Embryos pro- 
duced by females containing the two nor- 
mal copies of the bcd gene show lac2 ex- 
pression in the anterior cap (Fig. 4A), 
where BCD is present at its highest concen- 
tration (12, 2 1). When the BCD concen- 
tration within the embryo was increased by 
addition of wild-type copies of the bcd gene 
to the female genome (2 I), the extent of 
the lac2 expression domain correspondingly 
expanded toward the posterior (Fig. 4, C 
and D), indicating again that gene expres- 
sion mediated by the 16-bp element is 
dependent on bcd activity. 

To determine whether KNI is also able 
to interfere with this BCD-dependent gene 
activation in the embryo, we placed the Kr 
16-lacZ reporter gene in transgenic em- 
bryos, where KNI can be expressed under 
the control of a promoter element respon- 
sive to heat shock (20). When kni gene 
expression was induced throughout the em- 
bryo by heat shock, lac2 expression directed 
by the 16-bp element was eliminated (Fig. 
4E). Taken together, these findings indi- 
cate that the 16-bp element is a responsive 
site for the action of KNI and BCD, both in 
vitro and in vivo. The disruptive effect of 
mutants in the KNI zinc finger domain and 
the overlap of KNI and BCD DNA binding 
sites suggest that KNI represses by compet- 
itive DNA binding (22) rather than by 
protein-protein interactions (23). 

Repression dependent on KNI, due to 
blocking of BCD-dependent activation, 
might not be very efficient in regulating Kr 
730-mediated gene expression because only 
one out of the six BCD binding sites over- 
laps a KNI binding site. By contrast, TLL 
binds to all of the regions protected by BCD 
on the Kr 730 element. These obse~ations 
correlate well with genetic data indicating 
that KNI only weakly represses Kr (8, 24), 
whereas TLL can abolish Kr expression 
completely (9). The Kr 73Gmediated ex- 
pression was only slightly reduced by ec- 
topic expression of KNI, whereas ectopic 
expression of TLL led to a complete repres- 
sion in transgenic embryos (Fig. 4, F 
through H). Both TLL and KNI have do- 
mains that substantially resemble the 
DNA-binding domain of steroid receptors, 
but while TLL has some weak homology to 
the ligand-binding domain, KNI has little 
similarity to that part of the classical steroid 
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Fig. 3. The 16-bp element-mediated transcriptional activa- 
tion by BCD and KNI in tissue culture cells. (A) Drosophila 
Schneider cells were co-transfected with various amounts of 
the bcd effector plasmid DNA pPacTNbcd (abscissa), and a 
constant DNA that amount lacked (1 the pgtdish) 16-bp of element CAT reporter (pPAdhCAT) gene construct or that "a:~\r~ loo 

contained seven copies of it (pKrl6AdhCAT) (16, 17). In t 
experiments with pKrl6AdhCAT reporter plasmid (solid O 

bars), CAT gene expression increased with the amount of 0 0.1 0.5 0.7 1 5 10 0 0.1 0.5 0.7 1 5 10 0 0.1 0.5 0.7 1 5 10 

bcd effector plasmid added. The control experiments with p~ .c l~bcdwdt .h )  ~P.ck~~U&Vdirh) P p = ~ ~ W ~ )  

the pPAdhCAT reporter plasmid (open bars) indicate that no significant experiments. The BCD-dependent CAT gene expression decreased with 
activation of gene expression occurred in the absence of the 16-bp the amount of kni effector plasmid added. (C) Co-transfection experi- 
element. Each bar represents the mean value from three independent ments with constant amounts of pKrl6AdhCAT reporter DNA (1 pg), 
experiments. (B) Co-transfection experiments with pKrl6AdhCAT report- pPackni effector DNA (0.5 pg), and increasing amounts of pPacTNbcd 
er plasmid and the two effector plasmids pPacTNbcd and pPackni (16, effector plasmid. Each bar represents the mean value from three inde- 
17). Plasmid pKrl6AdhCAT (1 pg) and bcdeffector plasmid (5 pg) were pendent experiments. The amount of BCD required to stimulate Kr 
co-transfected with increasing amounts of kni effector plasmid, pPackni 16CAT gene expression in the presence of KNI is higher than that 
(abscissa). Each bar represents the mean value from three independent required in the absence of KNI (A). 

receptors. There i s  no  evidence that either 
one acts as receptor. This is supported by our 
results, which show that ectopically ex- 
pressed TLL or KNI (Fig. 4, F through H) 
are equally functional in other embryonic 
regions. A ligand, if one exists, would then 
have to be uniformly distributed. Neither 
KNI nor TLL(181-5 17) binding sites resem- 
ble the palindromic or tandem repeat se- 
quences recognized by vertebrate hormone 
receptors, which act principally as activa- 

tors, not repressors, of transcription (1, 14). 
Gene activation or repression by compe- 

t i t ion o f  opposing transcriptional regulators 
for the same binding sites (22), as estab- 
lished here for the 16-bp element, may 
provide a molecular basis for gap gene 
products to contribute to the spatial control 
o f  Kr gene expression (24, 25). The con- 
centration o f  a gap protein at a particular 
point in the gradient of that protein across 
the embryo (24-26) may effectively block 

Fig. 4. Expression of laddirected 
by the 16-bp element and by the Kr 

la 
730 element in wild-type and exper- 
imentally manipulated embryos. In 
(A) through (D), antibody to p-ga- 
lactosidase was used to stain whole 
mount embryos (19) carrying six 
copies of the 16-bp element in the 
Kr l 6 l a c Z  reporter gene construct ,.- 
(17) in homozygous conditions. In 
IR throuah IM,  antibodv to B-aa- _. --- - . ,- 
ktosidase and antibody to even- (O 
skipped protein were used together 
to stain whole mount embryos car- 
rying both a ladreporter gene and 
an hsp70 effector gene construct 
(20). (A) Embryo der~ved from wild- 
type females (two coples of the bcd 
w~ld-type gene). (B) No lacZ ex- 
presslon was observed in embryos 
derived from bcdE' mutant mothers 
(20. 21 1. that is. in the absence of 
bcd a c h y .  (C and D) Expression 
of l a d  in embryos derived from females with (C) four and (D) six wild-type copies of the bcd gene. 
The expression domain extended more posteriorly in embryos derived from mothers with increased 
bcd activity. (E) Expression of IacZand even-skipped in heat-shocked embryos containing one copy 
each of the Kr 16lacZand the hsp70knigenes (20). Heat shock leads to ectopic expression of kni 
activity throughout the embryo, resulting in a severe disruption of the even-skippedpattern and a lack 
of gene expression mediated by the 16-bp element. In a control experiment, heat shock of embryos 
carrying the Kr 16lacZgene [as in (A) through (D)], but no hsp70knigene, did not lead to repression 
of IacZexpression, indicating that the lack of the 16-bp element-mediated gene expression is due to 
ectopic kniactivity. (F) Kr 73Mediated gene expression in early blastoderm embryos (1 1 ). Staining 
of the even-skipped protein (19) sewed as an internal standard for the staining intensity. (G) Kr 
73Mediated gene expression in transgenic embryos containing the hsp7Okni gene (20). After heat 
shock (24), the amount of Kr 73O-mediated gene expression was reduced in comparison to the 
amount of even-skippedprotein staining. The altered stripe pattern is indicative of ectopic kniactivity. 
(H) Kr 73O-mediated gene expression in transgenic embryos containing the hsp70tllgene (9); after 
heat shock (9), gene expression was absent. The distribution of even-skipped protein was abnormal, 
indicative of ectopic tllactivity. Methods, constructs, and mutants are described in (17-20). 

gene activation by the amount o f  BCD 
found at that location (23, thus restricting 
the init ial gene activation in response to  
the gradient o f  BCD morphogen (24, 27). 
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Molecular Cloning of the Interleukin- 1 P 
Converting Enzyme 

Douglas Pat Cerretti,* Carl J. Kozlosky, Bruce Mosley, 
Nicole Nelson, Kirk Van Ness, Teresa A. Greenstreet, 

Carl J. March, Shirley R. Kronheim, Teresa Druck, 
Linda A. Cannizzaro, Kay Huebner, Roy A. Black 

Interleukin-1 p (IL-1 p) mediates a wide range of immune and inflammatory responses. The 
active cytokine is generated by proteolytic cleavage of an inactive precursor. A comple- 
mentary DNA encoding a protease that carries out this cleavage has been cloned. Re- 
combinant expression in COS-7 cells enabled the cells to process precursor IL-1 p to the 
mature form. Sequence analysis indicated that the enzyme itself may undergo proteolytic 
processing. The gene encoding the protease was mapped to chromosomal band 11 q23, 
a site frequently involved in rearrangement in human cancers. 

T h e  cytokine interleukin-1 (IL-1) has 
been implicated in inflammation, septic 
shock, and other physiological situations, 
including wound healing and the growth of 
certain leukemias ( I ) .  There are two dis- 
tantly related forms of IL-1 ( 2 ) ,  IL-la and 
IL-1P; the latter is the predominant species 
released by monocytes. Most efforts to de- 
velop an IL-1 antagonist have focused on 
inhibition of binding to the IL-1 receptor, 
which mediates biological resuonses to both - 
forms of the cytokine (3). In some circum- 
stances. it mav be desirable to discriminate 
between the two forms of IL-1; an altema- 
tive approach specific to IL-1 P involves the 
inhibition of the protease required for its 
biosynthesis. This protease (the IL- 1 P con- 

verting enzyme or convertase) cleaves the 
inactive 3 1-kD precursor of IL-1 P between 
Asp116 and Ala117, releasing the 153 
COOH-terminal amino acids that consti- 
tute the mature cytokine ( 4 4 ) .  The criti- 
cal function of this protease is indicated by 
the recent finding that cowpox virus en- 
codes a highly specific inhibitor of the 
enzyme; this inhibitor is necessary for the 
virus to suppress the host inflammatory 
response (7). To pursue the study of this 
protease, we have cloned a cDNA that 
encodes a proteolytically active form of this 
converting enzyme. 

The IL-1P converting enzyme was puri- 
fied from the human acute monocytic leu- 
kemia cell line THP-1, and 20 amino acids 
from the NH,-terminus were determined 

D. P. Cerretti, C. J. Kozlosky, B. Mosley, N. Nelson, K. (Fig. (8). The convertase was 
Van Ness, T. A. Greenstreet, C. J. March, S. R, isolated in three stages. First, single-strand- 
Kronheim, R. A. Black, lmmunex Corporation, 51 Uni- ed cDNA prepared from THp-1 cells was 
versity Street, Seattle, WA 98101. 
T. Druck, L. A. Cannizzaro, K. Huebner, Jefferson amp1ified by polymerase chain 
Cancer Institute, Thomas Jefferson University, Phila- (PCR) with degenerate oligonucleotide 
delphia, PA 19140.  rimers based on the NH,-terminal se- 
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