
collection. Our data show, however, that 
there is also a "background" source of 
< 190°C group H5  chondrites (for exam- 
ple, Fig. l ) ,  with cosmic-ray exposure ages 
of >20 Ma, which might represent earlier 
breakup events or even fragments of a 
completely different parent body. 

In summary, we suggest that we can now 
account for the origin and destruction of a 
large group of H5  chondrites found only in 
the Antarctic meteorite collection. Our data 
show that the terrestrial meteorite flux is not 
a constant. Numbers, sizes, and relative pro- 
portions of different meteorite types can 
change over relatively short periods of time, 
at least in some cases. In this light, we 
suggest that a more critical examination of 
the large Antarctic meteorite collection may 
well turn up more cases of temporal changes 
in the meteorite flux. 
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Response of Regional Seismicity to the Static Stress 
Change Produced by the Lorna Prieta Earthquake 
PAUL A. REASENBERG AND ROBERT W. SIMPSON 

The 1989 Loma Prieta, California, earthquake perturbed the static stress field over a 
large area of central California. The pattern of stress changes on  major faults in the 
region predicted by models of the earthquake's dislocation agrees closely with changes 
in the regional seismicity rate after the earthquake. The agreement is best for models 
with low values of the coefficient of friction (0.1 5 p 5 0.3) on  Bay Area faults. Both 
the stress models and measurements suggest that stresses were increased on the San 
Andreas fault north of the Loma Prieta rupture, but decreased slightly on  the Hayward 
fault. This relaxation does not warrant lower probability estimates for large earth- 
quakes on the Hayward fault in the next 30 years, however. 

T HE MAGNITUDE (M) 7.1 LOMA PRI- 
eta earthquake was the largest earth- 
quake to strike the San Francisco Bay 

region since 1906 (1). In addition to radi- 
ating seismic waves, the earthquake intro- 
duced a static stress perturbation to the 
region as a result of its displacement, which 
averaged about 2 m between depths of 6 and 
18 km. An immediate concern after the 
earthquake was the possible effect this stress 
perturbation might have had on other major 
faults in the Bay Area. On two occasions in 
the 1800s a large earthquake on one side of 
the Bay had been followed within 3 years by 
a second large earthquake on the opposite 

side (2). Because the Hayward fault proba- 
bly ruptured on both of these occasions, the 
stress changes on the Hayward fault were of 
particular interest (3). To evaluate the pos- 
sibility of such interactions we determined 
the static stress changes produced within an 
elastic half space by model dislocation sur- 
faces, and compared the results to regionally 
observed changes in the rates of seismicity 
(4, 5 ) .  

For our stress calculations we simulated 
the Loma Prieta displacement at depth by a 
rectangular dislocation surface inferred from 
geodetic measurements made before and 
after the earthquake (6). Although complex- 
ities in the seismic waveforms observed dur- 

U.S. Geological Survey, Mail Stop 977,345 Middlefield ing the earthquake suggest the rupture 
Road, Menlo Park, CA 94025. was complex (7) ,  we chose to use a simple 

model for initial calculations; our calculated 
results are least accurate in the near field 
(within about 40 km of the rupture surface) 
where the details of the slip distribution are 
important. In the far field, the details of the 
slip distribution become less important than 
the total moment of the earthquake and the 
average orientation of the rupture plane. 

The major faults in the Bay Area were 
represented by alignments of vertical 10-km- 
long rectangular patches extending from the 
surface to a depth of 13 km (8). Stress 
changes were calculated at the centers of the 
patches (9) .  Both shear stress and normal 
stress changed on the fault surfaces as a 
result of the Loma Prieta earthquake. Be- 
cause the major vertical Bay Area faults are 
probably loaded predominantly by right- 
lateral shear, the shear stress changes im- 
posed by the Loma Prieta rupture can either 
increase (if the change is right-lateral) or 
decrease (if the change is left-lateral) the 
shear load. Laboratory studies of rock fric- 
tion and failure suggest that normal forces 
are important in determining resistance to 
sliding (10). We defined a Coulomb failure 
function (CFF) for comparison with 
changes in rates of seismicity: 

CFF 171 - p(u - p )  - S 

This function is based on the Coulomb 
criterion for shear failure of rocks 

where 171 is the magnitude of shear traction 
acting on the plane, u is the normal traction 
(positive for compression), p  is the pore 
fluid pressure, p is the coefficient of internal 
friction, and S is the cohesion (11). Thus 
changes in the CFF are given by 

ACFF = 171 - I.rol - p(Aa - Ap) - AS 

This expression is nonlinear in the changes 
in shear stress (12). It can be simplified by 
assuming that for vertical strike-slip faults 
the horizontal shear stresses are most impor- 
tant and that changes are superposed on a 
preexisting background level of right-lateral 
shear for most faults in the Bay Area. This 
leads to 

ACFF = AqrI - pAu 

where AT,, is the change in horizontal com- 
ponent of right-lateral shear stress (positive 
for more right-lateral) and Aa is the change 
in normal stress (positive for more compres- 
sion) (13). We also assume here that changes 
in p  and S are negligible. 

As discussed below, a choice of p = 0.2 
yielded the best agreement with observed 
seismicity rate changes (Fig. 1). Changes in 
CFF ranged from a few bars to less than 
0.01 bar (Fig. 1). San Andreas fault seg- 
ments at either end of the Loma Prieta 
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theLomaPrietarupnurrangeh2to25 
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dastic&maypoothltsthatethelonga 
arm e f k t  (14). 

Inordertosceifanyoftheststrsschangcs 
w a t ~ i n ~ t y , w e m e a s u r c d t h e  
rrgionalcoscismicchangein~tyrate 
using thc sratistic B, which is sensitive to a 
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(from Los Gatos to Watson*); the San 
Francisco Ptninsula in an arca of thrust 
fiultsnearLosGatosandalongtheSan 
AndhasandSanGregoriofiultsnearDaly 
City; along the San Og&dreas and Sargent 
faults from Watson* to Bear Valley; a 
partiay. &hore segment ofthe San Grego- 
rio fault neai Point An0 Nucvo; and along 
the Alamo fiult, near Livermore. With the 
exaption of  the activity near Point An0 
NU& (23), these area.-generally coincide 
with fiult scgments having inacasod CFF. 
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miaty rate occur along the southem Gala- 
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. . 
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vvivm offile background scismk- 
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Fig. 3. Seismicity change P and 
stress change ACFF(k) on 141 
model fault segments for k = 0.2. 
Numbers (refer to Fig. 1) indicate 
segments experiencing the largest 
changes (lpjl 2 2 and IACFF,I r 
0.2 bar). 

Coefficient of friction 

Fig. 4. Measures of agreement between stress 
changes and seismicity changes on fault segments, 
shown as a function of the coefficient of friction k. 
Squares, values of XZ (scale on left); triangles, 
coefficients of correlation between stress change 
and seismicity change (scale on right). Solid lines, 
all 141 fault segments; broken lines, fault. seg- 
ments experiencing significantly large changes 
(numbered points in Fig. 3). Chi-squared c o d -  
dence levels are 6.64 (p = 0.01) and 10.83 (p = 
0.001). 

preclude unambiguous interpretation of the 
negative values of p observed along the 
southern Calaveras and Mount Lewis faults 
in terms of postseismic effects. The Hayward 
fault, however, was essentially free of signif- 
icant swarm and aftershock activity during 
the 1980s. Consequently, the apparent low 
postseismic rate observed there (strongest 
on the southern Hayward fault) is not be- 
lieved to be an artifact and may be related to 
the Loma Prieta earthquake. 

To investigate the overall dependence be- 
tween the modeled stress changes and the 
observed seismicity, we compared, for each 
fault segment Sj, the mean seismicity rate 
change index 6 corresponding to the subset 
of cells within 5 km of segment Sj to the 
coseismic static stress change ACFF,.(p,) cal- 
d a t e d  on that segment, for various as- 
sumed values of the coefficient of friction p, 
(24). We show one of the better fitting 
comparisons (for p, = 0.2) in Fig. 3. For this 
value of p,, concordant changes in stress and 
seismicity (both increase or both decrease) 

Change In Coulomb failure function (bar) 

occurred on 87 fault segments, discordant 
changes occurred on 54 segments, and a 
generally positive correspondence between 
j3 and ACFF is visually apparent. A X2 test 
on all fault segments rejects the null hypoth- 
esis that 15 and ACFF(p,) are independent ( p  
< 0.001 for 0.2 I p, I 0 . 3 ; ~  < 0.01 for 0.1 
I p, I 0.4) (25). The correlation coefficient 
p attains its maximum value for p, = 0.2, and 
exceeds 0.5 for 0.1 I p, I 0.3 (Fig. 4) (26). 

Static stress changes as small as a few tenths 
of a bar apparently produced detectable 
changes in seismicity. This level of stress 
change is about one order of magnitude 
larger than that of tidally induced stress 
changes (27), and is comparable to stress 
changes produced at seismogenic depths by 
the filling of water reservoirs (28). The re- 
sponse of seismicity to stress change decreases 
with distance from the dislocation, and is 
statistically undetectable (at the p = 0.05 
level) at distances beyond 80 to 100 km; at 
this distance the maximum absolute value of 
ACFF is approximately 0.1 bar (29). The 
apparent sensitivity of regional seismicity to 
such small stress changes suggests that fluctu- 
ations in regional seismicity may be used to 
detect and model some aseismic slip events, 
including afterslip, slow earthquakes, slip on 
the ductile portion of vertical faults, and slip 
on horizontal detachment surfaces. 

Our observations of the regional seismic- 
ity response to the Loma Prieta earthquake 
favor models involving low friction (0.1 I p, 
I 0.3) on central California faults. In con- 
trast, laboratory experiments on frictional 
slip in rock that typically have indicated 
higher coefficients of friction (0.5 I p, 5 
0.8) have been widely used as an analog for 
brittle faulting in the upper 15 to 20 krn of 
the crust (30). Our result is consistent with 
the idea that low friction could explain 
seismological and other evidence for fault- 
normal compression in central California 
(12, 31) and the lack of an observable heat 

flow anomaly associated with the San An- 
dreas fault (32). The apparent low friction 
value could also be explained by a high 
coefficient of friction (consistent with labo- 
ratory studies) combined with changes in 
pore pressure in a compliant fault zone (33). 

Our observations support the conclusion 
(3) (based'on stress models alone) that sec- 
tions of the San Andreas fault north of the 
Loma Prieta earthquake were probably 
moved closer to failure as a result of the stress 
change produced by the earthquake. In addi- 
tion, the Hayward fault may have relaxed 
slightly. Such relaxation may be only tempo- 
rary, however. Simple models suggest that 
nonelastic adjustments and continued loading 
with time may alter both the magnitude and 
sign of stress changes induced on other faults 
by the Loma Prieta earthquake (34). The 
minimal degree of relaxation, uncertainties in 
its estimation, and its temporary effect offer 
no basis for reducing the 30-year probabilities 
for large earthquakes in central California or 
the regional efforts to prepare for them. 

Our result suggests that the Loma Prieta 
earthquake will not trigger an earthquake on 
the Hayward or Mission fault. This conclu- 
sion, however, relies on a simple structural 
model consisting of vertical faults. The pres- 
ence of dipping structures along the Hay- 
ward fault could change this result (35). 
Some of our models with nonvertical Hay- 
ward and Mission faults weakly support a 
triggering hypothesis, but these are poorly 
constrained by or inconsistent with the seis- 
micity (36). If such a pairing does occur, 
however, it would suggest that our present 
structural model is inadequate or that non- 
elastic effects have exceeded the static elastic 
stress changes, or both. 
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The Fossil Record and Evolution: Comparing Cladistic 
and Paleontologic Evidence for Vertebrate History 

The fossil record offers the only direct evidence of extinct life and thus has figured 
prominently in considerations of evolutionary patterns. But the incomplete nature of 
the fossil record has also been emphasized in arguments that fossils play only a 
secondary role in the recovery of phylogenetic histories based on extant taxa. Although 
these criticisms recently have been countered, there is no general understanding of the 
correspondence between the fossil record and phylogeny. An empirical survey of 
recently published studies suggests no basis for assuming that the stratigraphic 
occurrence of fossils always provides a precise reflection of phylogeny. Nevertheless, 
our survey of a sample of taxa shows a tendency for positive correlation between age 
and clade rank and, hence, a degree of correspondence between phylogenetic pattern 
and the paleontologic record. 

S INCE THE BIRTH OF PALEONTOLOGY 

the fossil record has been interpreted 
as a record of life's history. The pale- 

ontologic record of horses, for example, has 
been claimed to demonstrate the potential of 
fossils in disclosing the branching sequence 
of taxa through time as well as indicating 
major evolutionary trends toward increasing 

specializations (1-3). However, what pat- 
terns do this record reflect and how precisely 
do they capture evolutionary events? For 
instance, fossils have been considered to 
provide so little evidence for relationships 
among living taxa that it has been suggested 
that they be relegated to a secondary role in 
reconstruction of phylogeny (4-6). Such 
criticisms and recommendations are coun- 

Deparunent ofVertebrate Paleontology, Mu. tered in a recent demonstration that fossil 
seum of Natural History, New York, NY 10024. taxa preserve pivotal evidence for ancient 
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