
Cerebral Cortical Mechanisms of 
Reaching Movements 

Because reaching movements have a clear objective-to 
bring the hand to the spatial location of an object-they 
are well suited to study how the central nervous system 
plans a purposeful act from sensory input to motor 
output. Most models of movement planning propose a 
serial hierarchy of analytic steps. However, the central 
nervous system is organized into densely interconnected 
populations of neurons. This paradox between the appar- 
ent serial order of central nervous system function and its 
complex internal organization is strikingly demonstrated 
by recent behavioral, modeling, and neurophysiological 
studies of reaching movements. 

T HIS ARTICLE ADDRESSES TWO QUESTIONS: (i) WHAT PLAN- 

ning steps intervene between the decision to make a reaching 
movement and its initiation? and (ii) how are those steps 

implemented in the central nervous system (CNS)? Functions such 
as motor control have often been approached as computational 
problems amenable to serial analytical solutions expressed in the 
activity of single cells. Motor control theory has long been domi- 
nated, in fact, by motor-program models that describe planning as a 
serial hierarchy of instructions, rules, decision trees, or computa- 
tional algorithms that progress from more abstract or general 
features of a movement to its more specific details (1-3). However, 
these models present major conceptual problems with respect to 
causal mechanisms (2, 3): how are the instructions, algorithms, and 
Boolean logic of motor programs implemented by neurons? In this 
article, we survey new insights into biological mechanisms that address 
this conceptual cul-de-sac of traditional motor control theory. 

Behavioral Studies 
To produce a visually guided reaching movement, the CNS must 

convert information originating primarily in the occipitoparietal 
visual system (4) about the spatial location of a target into a pattern 
of muscle activity that moves the  hand toward the target. Thus, 
movement planning can be viewed analytically as the process of 
transforming movement-related signals from the reference frame of 
the hand in space to that of arm muscle activity. The experimental 
problem, therefore, is to identify the intervening coordinate frame- 
works and transformations used by the motor system. Multiarticular 
reaching movements are computational problems with no unique 
solution; many different hand paths, joint motions, and muscle activ- 
ities can accomplish the same goal. Nevertheless, behavioral studies 
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have shown that unobstructed reaching movements have stereo- 
typed features, such as approximately straight hand paths with 
bell-shaped velocity profiles, tight phase-coupling of the motions 
of the shoulder and elbow joints, and consistent patterns of muscle 
activity (5). These invariant features are presumed to reflect the 
movement attributes, coordinate frames, and transformations by 
which the CNS represents and plans movements (5, 6 ) .  

Many current models for reaching movements, influenced in part 
by robotic controller studies, recognize three general hierarchical 
levels of coordinate reference frames (5-7) (Fig. 1A). The highest 
level is a reference frame of extrinsic kinematic attributes that 
describe the motion of the hand through space, such as target 
location, movement hand path, and direction. Indeed, introspection 
suggests that we "think" of arm movement in terms of the motion of 
the hand through space; the goal of reaching movements-to place 
the hand at a spatial location-is defined in such terms. An 
intermediate level involves intrinsic kinematic attributes, such as the 
joint angles or muscle lengths that define a limb's geometry during 
movement. The lowest level concerns dynamics, namely, the causal 
forces and muscle activity required for motor behavior, whether at 
equilibrium (statics) or varying with time (kinetics) (8). These 
reference frames are described in terms of Newtonian mechanics, 
and one can plan every moment-to-moment detail of a reaching 
movement by using the laws of motion to solve the coordinate 
transformations (Fig. 1B). However, this is an inefficient approach 
even for robots (7). Not only are the equations of multijoint motion 
complex, but the subsequent conversion of joint torques to muscle 
activation patterns is problematic, given the complexity of muscu- 
loskeletal anatomy and biomechanics. Moreover, the fact that limb 
movements must obey the laws of motion does not mean that the 
CNS contains an explicit representation of those formalisms or that 
it controls the musculoskeletal system by applying such arbitrary first 
principles and engineering operations (2, 3, 9-1 1). 

location torques activity 

Fig. 1. Reaching movement hierarchies. (A) A general three-step planning 
hierarchy. Each arrow represents a coordinate transformation. (B) A robotics 
planning hierarchy that treats motor control as a problem in mechanics. The 
movement is planned explicitly by first defining the hand path and velocity 
profile from the current hand position to the target, then solving equations 
that define the moment-to-moment transformations from hand path to joint 
motions (inverse kinematics) and from joint angles to joint torques (inverse 
dynamics), and finally parceling out the joint torques among the many 
muscles acting across each joint. The dotted lines signify equivalent hierar- 
chical levels between (A) and (B). 
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Thus, many recent studies have searched fix biological processes 
that do not presuppose formalisms such as Newtonian mechanics 
(1 1). For instance, Soechting and Flanders have studied the transfor- 
mation from extrinsic to intrinsic kinematics by analyzing errors made 
by subjects in a variety of pointing tasks (12). Their results suggest that 
the spatial location of the target is first transformed from head- 
centered to shouldercentered spatial coordinates. The location is then 
redefined in an inainsic kinematic h e w o r k  by two separate chan- 
nels that convert target azimuth (horizontal direction) into the 
intended yaw angles of the upper arm and forearm in the sagitml plane 
when the hand is at the target, and target elevation and distance into 
arm segment elevation angles (13). The difference between current 
and intended arm angles is then transformed into a motor command 
signaling the direction of hand movement. The error patterns suggest 
that the CNS uses linear approximations of the exact nonlinear 
relation between limb segment angles and target location. Altemative- 
ly, others propose that the extrinsic to intrinsic transformation is 
realized by learning a mapping between target location and intended 
muscle lengths (14). Visual input about hand position relative to the 
target also plays a key role in this tradormation (15). 

Because the dynamics of multiarticular movements are very 
complex (7, 1 I), how the CNS determines appropriate multimus- 
cle activity patterns is a major problem in motor control theory. 
Some have proposed that the CNS can ignore dynamics if it 
controls muscles like tunable springs to exploit the inherent 
relation between muscle length and tension (16). In these contro- 
versial models ( l l ) ,  reaching movements are planned in terms of 
equilibrium points, the muscle lengths or joint angles at which net 
joint torques are zero. Centrally generated shifts in equilibrium 
points cause the limb to move along a trajectory to a new posture 
with zero net toque. Muscle activation patterns and output forces 
result from the springlike response of muscles to the equilibrium- 
point signals (14, 16). 

Two i n s i i  generated by these various studies are that many fea- 
tures of reaching movements may not be explicitly planned by supraspi- 
nal~andthatthemotwsystemmayusesimphjingrulesto 
generae dose but inexact approximations of an imded movement. For 
imtanq specification of a hand's path may not be an obligatory early 
planningstepbutanddresultindkdyfromthetramfbnnationof 
mgt location to intrinsic kinunatics (12, 14). Similarly, spinal cord 
circuitry and the mechanical properties of a limb could convert simple 
central control signals into complex time* ~~ [!dl as 
bell-shaped velocity profiles and mphasic elemomyogram (EMG) pat- 
term] without overt planning (14, 16). Indeed, cervical propri"pina1 
and xgmend locomotor circuits may play critical roles in oqpnkhg 
reaching movements (1 7). Thaefbre, it is sti l l  not possible to dktingmh 
the fixtures of reachmg movements that are arbitrarily imposed by 
supraspinalplanningp.oaessesfiom~thatareduetospinalcircuitry 
or are an inevitable comequeflce of muculosk- -a. 

Furthermore, all of these models have limitations, and their 
frequent assumption that a single unifying principle governs the 
planning of all movements is probably simplistic (6, 11, 12). Thus, 
although there is extensive circumstantial evidence that reaching 
movements are planned by a serial hierarchy of coordinate transfor- 
mations, there is still no consensus on the intermediate reference 
fiames by which motor plans for a reaching movement through 
space are converted to muscle activity. 

Neurophysiological Studies 
A distributed cerebral control system. Just as hierarchical phmng  

models predict that the CNS should contain multiple representa- 
tions of movement in different reference frames, several separate 

cerebral cortical areas are now implicated in the control of arm 
movements (Fig. 2). Lesions in each area cause distinct motor 
deficits, ranging in nature from spatiomotor discoordination and 
misreaching (parietal cortex), deficits in learning or retrieval of 
motor strategies and sequences (prefrontal and premotor cortex), to 
paralysis [primary motor cortex (MI)] (18-20). This suggests that 
each area is concerned with motor planning at a different level of 
abstraction, as if they form a serial cascade of structures that 
terminates in MI from which the final motor command is issued. 

However, the complex pattern of serial, reciprocal, and parallel 
interconnections among these arm-related areas does not lend itself 
readily to a simple unidirectional hierarchy (18-22). For instance, 
several of them project to MI as if serially antecedent to it but in 
parallel to one another; they are also extensively interconnected 
(19-21). Moreover, a number of them have their own descending 
comcorubral and corticopontine outputs, and their corticospinal 
projection now appears to be more substantial than previously 
thought (21), showing that their motor function is not mediated 
only by means of their projections into MI. Although MI may be the 
principal cortical access to the spinal motor apparatus, it is dearly 
not the final common path for cerebral control of movement (21). 

Neuronal recording studies. Three cortical areas-MI, parietal area 5 
(PAS), and the dorsal premotor cortex (PMd)-have been the most 
intensely smdied for neuronal correlates of a planning hierarchy 
during controlled reaching movements. Cells in all three areas have 
several response properties in common. When monkeys reach from 
a common start position to targets in different locations, cells in all 
three areas show similar directional tuning. Single-cell activity varies 
approximately as a cosine function of movement direction, centered 
on one p r e f d  direction that varies from cell to cell (Fig. 3) 
(23-26). Each cell, therefore, emits a graded signal for a broad range 
of movements. Conversely, each movement evokes a complex 
pattem of graded activation in each area that varies with movement 
direction (Fig. 4). The tonic activity of many cells also varies with 
stable arm posture at different targets (23-26). Although important 
differences also exist among the three cortical areas, they are relative 
and not absolute. Correlates of several putative hierarchical levels of 
movement representation can be found to different degrees in each 
comcal area by manipulation of different task variables (27-29), and 

Fig. 2. Several arm-related neuronal populations in the arebra1 cortex of a 
macaque monkey. MI, primary motor cortex; PMd and PMa, dorsal and 
postamnte premotor cortex; SMA, supplementary motor cortex; PF and 
PFd, pcefivntal and dorsal pcefivntal cow PA5 and PA%, posterior 
parietal cortex arras 5 and 7b; CMAr, CMAd, and CMAv, casual, dorsal, 
and ventral cmgdate motor areas. C i t e  areas arc on the medial surface 
of the hemisphere and are shown as if reflected in a mirror. Major sulci arc 
shown as if opened up (thin lines) to expose their banks. Cen, central sulcus; 
Arc, arcuate; C i ,  cingulate; Int, inuaparietal sulcus. 

SCIENCE, VOL. 255 



Fig. 3. The responses of three MI cells during 
reaching movements under different load condi- 
tions. The central polar plots in (A), (B), and (C) 
show the directional tuning of a neuron during 
unloaded arm movements in eight directions. The 
radius of each circle is the tonic activity with the 
arm at the central start position. The eight polar 
plots around each central plot illustrate the change 
in the cell's activity during the same arm move- 
ments, with external loads that pull the arm in 
eight different directions. The position of each 
polar plot corresponds to the direction in which 
the load pulled the arm. Responses ranged con- 
tinuously from (A) cells that were very sensitive to 
loads to (C) relatively insensitive cells. [Adapted from (30) with permission, Journal ofNeuroscience] 

the correlates of any given level are distributed across all three areas. 
Moreover, it is not yet possible to make conclusions about the 

specific attributes of movement and the reference frames signaled by 
neuronal activity in each area. For instance, when movements 
converge on one target from different start positions, discharge still 
varies with direction, as if signaling information about the move- 
ments themselves and not their common endpoint (25). The time- 
varying pattern of total population activity varies with the instanta- 
neous direction and velocity of movement (23, 24), which is 
strongly suggestive of an extrinsic representation of movement 
trajectories. However, it is also compatible with an intrinsic repre- 
sentation because of the stereotypical coupling between hand path 
and joint motions during reaching (26, 28, 29). When reaching 
movements are made with parallel hand paths but different start and 
end positions to dissociate extrinsic movement direction from 
intrinsic variables, cell-preferred directions in MI and PMd rotate 
with the starting shoulder joint angle (26). Although this supports 
a shoulder-centered intrinsic framework for single-cell activity dur- 
ing movement, population activity still varies with trajectory (26), 
suggesting that important differences exist between movement 
representation at the level of single cells and at the level of 
populations. 

The models in Fig. 1 predict that high-level planning stages 
represent movement in kinematic reference frames, whereas stages 
that are closer to movement execution transmit information about 
movement dynamics. This can be tested by making the same 
movement trajectories (constant kinematics) with different loads 
applied to the arm (variable dynamics). Studies have shown that cell 
discharge varies to different degrees in all three areas as a function of 
external loads (27-33) (Fig. 3). Load sensitivity forms a continuum; 
cells cannot be sorted into two distinct populations processing only 
kinematics or dynamics. Cells most sensitive to load are in MI, but 
even there, some cells are relatively insensitive (26-33) (Fig. 3). 
Sensitivity to load may depend on the structure to which each MI 
cell projects: corticospinal neurons may transmit more dynamics- 
level information than corticorubral or corticostriatal neurons (32). 
Total MI population discharge during movements with a load does 
not always correspond to movement direction (Fig. 4), and so 
cannot be transmitting only kinematic information about trajectory 
(28-3 1) .  The load-induced change in MI population activity acts as 
a signal appropriate to compensate for the loads (30, 3 1). Whether 
such changes are best correlated to output forces at the hand, 
shoulder joint torques, equilibrium points, multimuscle activation 
patterns, or other possible reference frames is not yet certain 
(28-31). In contrast, most single cells in PA5 are only modestly 
sensitive to loads, and the net PA5 population response is an 
unambiguous signal about arm movement kinematics under all load 
conditions (28-3 1). Sensitivity to load in PMd falls between that of 
MI and PA5 (33). 

Another way to see whether cell activity is related to movement 

planning or execution is to test its temporal coupling to movement 
initiation. For instance, one can give monkeys prior information about 
the direction of intended movement but delay movement initiation for 
several seconds. Activity changes during the delay period are pre- 
sumed to be involved in planning the upcoming movement (34). 
Tasks that use instructed delay periods again reveal a continuum of 
response patterns within and across areas without a sharp segregation 
of cells implicated in either movement planning or execution. During 
a delay period, many cells show directionally tuned activity; these cells 
are most common in PMd, less so in PA5, and least common in MI 
(35). Although some cells discharge only during the delay period, 
others discharge during both the delay period and the subsequent 
movement; still others, including the majority of MI cells, discharge 
only in relation to movement execution. 

Consistent with the hierarchical scheme, activity during a delay 
period appears to signal kinematic attributes of movement (27). The 
highest level in the hierarchical represention of movement (Fig. 1) 
concerns extrinsic kinematic attributes, and there is some evidence of 
its existence, particularly in PMd. For instance, delay-period activity 

Fig. 4. Vectorial representation of the activity of a population of MI neurons 
during arm movements toward the left. The response of each cell is 
represented by a vector along its preferred direction, whose length is 
proportional to the cell's discharge rate for that movement. The central 
vector cluster is the population response without external loads applied to 
the arm; the other eight vector clusters are the responses of the same cells 
during the same movements, with static loads that pull the arm in directions 
corresponding to the position of each vector cluster relative to the center. 
Each dotted arrow is the population vector sum, which points in the 
direction of movement. [Reprinted from (28) with permission, John Wiley 
and Sons, Ltd.] 
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varies with both target location and degree and intended curvature 
of the hand path (36) .  Moreover, PMd cells often generate delay- 
period activity with similar directional tuning before reaching 
movements made with either arm, as if processing information 
about spatial attributes of the ensuing movement independent of its 
intrinsic biomechanics (37) .  In tasks in which reaching movements 
are made in arbitrary directions away from a stimulus, transient 
changes in cell activity occur in all three areas between cue appear- 
ance and movement onset, which may contribute to the visuomotor 
transformation of cue direction to movement direction (38) .  

Another important feature of cell discharge is conditionality. The 
response of many cells, especially those outside MI, depends not 
only on the form of the movement but also on its context (39) .  Some 
cells discharge during reaching movements to grasp food but not 
during aversive reaching movements to push away an undesirable 
object. Similarly, cells in some areas may respond preferentially 
when movements are controlled by external stimuli rather than by 
self-generated motor strategies, or vice versa (40) .  

Hierarchies and heterarchies. The neurophysiological studies just 
described reveal neuronal correlates of several putative hierarchical 
planning stages for reaching movements, distributed across three 
cortical areas. The different combinations of response properties in 
each area imply that each cortical area has primary but not exclusive 
responsibility for certain representations or transformations and that 
each may be involved to varying degrees in planning several aspects 
of movement. Thus, the findings do not support an absolute 
segregation of response properties within a strict serial hierarchy of 
areas but are more consistent with a distributed hierarchy or 
heterarchy of nested interconnected cortical populations (3, 6, 41) .  
In a heterarchy, there is no fixed chain of command or direction of 
information flow; instead, the flow of information is flexible and 
dependent upon the context of an event (6, 41),  allowing different 
movement attributes or cortical areas to take priority under different 
behavioral circumstances (6, 41, 42) .  This concept is strongly 
supported by the conditionality of cell discharge. Representations of 
various movement attributes evolve concurrently in different inter- 
acting parts of the heterarchy (3, 27-29, 41, 43) ,  so that from 

Target 
onset 

Time (ms) 

Fig. 5. Cell recruitment curves illustrating the sequential but overlapping 
activation of four different arm-related cortical populations in one monkey 
during a reaching task (65). Each curve is a cumulative frequency histogram 
of the time of the first change in activity of each cell for eight different 
directions of movement from a common central starting position. Targets of 
movement appeared at time 0; the mean time of arm movement initiation is 
indicated by the arrows. Area 6, PMd; area 4, MI; area 5, PA5; area 2, 
primary somatosensory cortex immediately anterior to PA5. 

moment to moment there can be a net serial flow of information 
across the intermeshed representations although its direction may 
vary with task conditions. Indeed, differences in the timing of 
movement-related activity in different areas are routinely observed 
(20, 24, 44) (Fig. 5 ) .  When a reaching target abruptly appears, many 
prefrontal (PF) and PMd cells begin to discharge before MI 
neurons, consistent with their close anatomical coupling to the 
occipitoparietal system (20, 44) .  Baradoxically, although many PA5 
cells have response properties that seem to place them hierarchically 
antecedent to MI, PA5 is activated later than MI in visually initiated 
reaching tasks (24, 43) .  PA5 is a major component of the soma- 
tosensory system but also projects to MI and PMd. Thus, the signal 
it generates about arm kinematics could contribute simultaneously 
to kinesthetic perception and to motor control, as if both "down- 
stream" and "upstream" of PMd and MI (43) .  This example 
illustrates how difficult it is to determine functional relations among 
components of a distributed system. 

Another important property of the motor system also appears to 
favor a distributed, or heterarchical, control system. In sensory 
systems, many features of a stimulus (form, size, color, texture) are 
independent attributes that theoretically could be analyzed by 
separate neuronal channels. In motor control, however, parameters 
of kinematics and dynamics such as direction, velocity, and forces, 
although individually controllable, are not truly independent. They 
are inextricably linked through the laws of motion, so that an 
intended change in one produces or requires changes in others. A 
heterarchy of interacting representations of different movement 
attributes may be the means by which the motor system can 
separately control many interdependent parameters of movement 
while successfully coping with the laws of motion, context-depen- 
dent changes in planning priorities, and the complexities of muscu- 
loskeletal biomechanics (28, 29) .  

Neuronal Implementation of Sensorimotor 
Transformations 

What causal mechanisms could endow the motor system with the 
transcendent "intelligence" to perform sensorimotor transforma- 
tions? Recent attempts to answer this question have modeled the 
motor system as interconnected matrix-like arrays of neurons (2, 3, 
45, 46) .  The continuing development of network models, in partic- 
ular, is attracting great interest for many reasons (3, 47) .  For one, 
networks are self-organizing; empirical trial-and-error learning rules 
cause them to converge on a solution to a computational problem by 
altering the weighting of interelement connections. Furthermore, 
certain temporal properties of network models such as membrane 
time constants, temporal facilitation, and conduction delays allow 
the motor system to produce signals varying in time without having 
to solve differential or integral equations (14, 48) .  Networks can be 
viewed as nonalgorithmic ( 3 )  information-processing mechanisms 
or as computational maps (49)  that perform input-output transfor- 
mations as determined by the topography and weightings of its 
connectivity matrix and the activation state of each element. 

Motor control models based on these principles can find solutions 
to many problems concerning movement kinematics, dynamics, 
motor coordination, and sensorimotor transformations without a 
priori knowledge of the structure or mechanical properties of a limb 
or the external world (14, 48, 50-52). The optimal solution to such 
problems is often a hierarchical network with several layers of 
neurons between input and output. Recurrent connections among 
layers of the network, a prominent feature of biological motor 
systems, impart it with the ability to generate time-varying signals 
required for coordinated movement sequences (51) .  The success of 

SCIENCE, VOL. 255 



these models suggests some important new perspectives on a 
number of biological motor control issues. 

Sensorimotor transformations. The powerful effect of movement 
direction on cell discharge may reflect the need for accurate direc- 
tional information at all stages of planning. The ubiquitous tuning 
curves could be produced by neuronal processes underlying sensori- 
motor transformations (28, 29). For instance, Lukashin (53) has 
described a simple network that learns arbitrary transformations 
between stimulus location and movement direction. The elements in 
the network show the same broad tuning curves, uniform preferred- 
direction distribution, and population-vector properties as motor 
cortex cells. 

Andersen and co-workers (54) have been studying the hypothesis 
that a coordinate transformation occurs in parietal area 7 (PA7) 
between retinotopic and head-centered space. PA7 cells do not have 
explicit spatial receptive fields in head-centered space. Instead, the 
discharge of many PA7 cells varies with both stimulus position on 
the retina and orbital position of the eyes. Their modeling studies 
show that cells with this combination of properties can signal 
stimulus location in head-centered space at the neuronal population 
level. The transformation results when inputs in different reference 
frames (retinal and orbital) converge onto a population of neurons, 
each of which responds as if functioning simultaneously in both 
reference frames (or neither, if one prefers). The resulting head- 
centered representation is a distributed property of the population. 

The role of eye position signals in PA7 emphasizes that pro- 
prioceptive input, often relegated to the feedback loop of servo- 
control mechanisms, may have a major role in sensorimotor 
transformations. Proprioceptive input modulates the activation 
state of cell populations throughout the motor system as a 
function of joint angles, muscle lengths, and muscle contractile 
states. This can contribute to extrinsic-intrinsic transformations by 
causing population output signals to vary with htrinsic parame- 
ters, even if other convergent inputs signal extrinsic information. 
Similarly, it could facilitate the transformation from kinematics to 
dynamics by altering input-output properties of cell populations 
to compensate for external loads and for biomechanical properties 
of a limb that change with its geometry, such as muscle length- 
tension properties. 

These ideas are central to models proposed by Jeannerod (15) and 
Burnod and co-workers (55) for sensorimotor transformations in 
reaching tasks. In these models, a signal about movement intent, 
such as a directional vector in space, projects onto a multilayer 
network of neurons. Each cell represents movement in a unique 
reference frame whose principal axis is defined by its preferred 
direction. Each neuron's output varies approximately as the cosine 
of the difference between the directional input signal and its own 
preferred direction. This tuning function is a resul't of the pattern of 
convergent inputs and the local activation state of the network; 
neurons do not know trigonometry. The net population signal of 
the different network layers contains information not explicit in any 
single cell about global features of the movement, such as its 
trajectory or the direction of its forces. Transformations between 
levels of movement representation are produced by introducing 
inputs in appropriate reference frames at appropriate points in the 
network. 

The topography of interelement connections also is a critical 
aspect of the transformation mechanism. Several network robotics 
models predict that single output units form weighted connections 
that diverge onto different muscles (14, 50). In striking agreement, 
corticospinal axons that synapse directly onto spinal motor neurons 
branch into the motor neuron pools of several functionally related 
muscles (56). In this way, the transformation from the MI repre- 
sentation of movement to a single-muscle representation in the 

spinal cord is partly embedded in the spatial geometry of cortico- 
spinal terminations (17, 28, 29). 

The motor system solves problems, not equations. The motor system 
does not control movement by solving algorithms derived from first 
principles. Rather, it might be more properly viewed as a system that 
develops empirical solutions to motor control problems: it "learns 
by doing" (9, 57). Developmental studies show that accurate 
reaching requires both practice m d  vision of the limb during 
movement, as if visuomotor experience is essential to learn the 
sensorimotor transformations (58). The learning occurs by succes- 
sive approximation; repeated "perception-action cycles" (14, 50-59) 
use knowledge of reaching errors (provided by visual and proprio- 
ceptive input) to fine-tune the functional connectivity of the motor 
system to improve future reaching accuracy (60). In this way, 
empirical knowledge about planning transformations and muscu- 
loskeletal system properties becomes implicitly embedded in the 
synaptic connectivity matrix, from whose collective computational 
power emerges the intelligence of the motor system. Similar pro- 
cesses could account for the acquisition of any motor skill. 

MI as a computational map for sensorimotor transformations: form 
follows function. An old question is how the role of MI is reflected in 
the organization of its topographic motor output map (61). This 
map is a complex mosaic of small clusters of corticospinal neurons 
which modulate the activity of one or more functionally related 
muscles, with extensive interdigitation of the different output clus- 
ters projecting to different muscle groups at the same or different 
joints (61). This reductionist view has yielded insights into how MI  
output modulates muscle activity (56). A different issue is how the 
map is used to control multiarticular movements. A simplistic 
hypothesis is that it functions as a reference table; the motor system 
determines which muscles to activate at what level and then locates 
and activates the appropriate output clusters scattered across the 
fragmented output map. 

However, the motor command for reaching is a population code 
that implies graded modulation of the activity of many proximal- 
arm output clusters throughout the map. Therefore, it might be 
useful to view the map as a single functional unit whose seemingly 
chaotic arrangement of interdigitated output clusters is a computa- 
tional map for the control of multiarticular acts, with the entire arm 
portion of the map implicated in any reaching movement. Although 
local aggregates of clusters may be optimally activated during specific 
reaching movements (61), functionally related output clusters 
throughout the map interact by means of a matrix of intracortical 
connections to coordinate different multiarticular movements (62). 
This also places great importance on the topographic distribution of 
inputs into MI in shaping the pattern of activity across the map (9, 46, 
61). 

The idea that MI is a computational map, rather than a map of 
muscles or movements, is further supported by recent findings of 
rapid changes in the MI output map (63), as if a considerable degree 
of flexibility exists between a given point on the map and muscula- 
ture. These findings suggest that the input-output properties of the 
MI map can be continually altered during development and skill 
acquisition. Changes in local MI inhibitory circuitry (63) and in the 
efficacy of synaptic inputs into MI (64) may contribute to this 
reorganization. 

Changing Perspectives on Motor Control 
The material reviewed here indicates that the planning of reaching 

movements involves a distributed hierarchy, or heterarchy, of move- 
ment representations. Each cortical area has a specific role in the 
process, as reflected by the different combinations of cell response 
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Physics of the Granular State 

Granular materials display a variety of behaviors that are in 
many ways different from those of other substances. They 
cannot be easily classified as either solids or liquids. This 
has prompted the generation of analogies between the 
physics found in a simple sandpile and that found in com- 
plicated microscopic systems, such as flux motion in super- 
conductors or spin glasses. Recently, the unusual behavior 
of granular systems has led to a number of new theories and 
to a new era of experimentation on granular systems. 

'To see a world in a grain of sand. . . ." 
-Auguries oflnnocence, WILLIAM B L ~  

S AND IN AN H O U R G L A S S ,  SALT PILES A L O N G  T H E  SLDE O F  A 

highway, screes at the bottom of a mountain, and sugar in a 
bowl are all examples of familiar granular materials. These 

materials show a number of easily observed phenomena that are 
immediate manifestations of exceptional properties (Fig. 1). As dis- 
tinct from liquids, granular heaps are stationary as long as the top 
surface is at a slope less than the "angle of repose," 0,. No avalanches 
spontaneously occur until the slope is increased above the "maximum 
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angle of stability," 0,,. When the slope is increased slightly above O,,, 
grains begin to flow and an avalanche of particles occurs (Fig. 1B). 
However, instead of uniform motion throughout the sample, as ex- 
pected in ordinary fluids, all of the motion occurs in a relatively thin 
boundary layer near the surface, which appears blurred. Between 0, and 
0,,, is a region of complex, bistable behavior in which the material can be 
either stationary or flowing depending on how the pile was prepared. 

There is also unusual behavior in a second simple configuration: a 
container filled with granular material up to a height, h. In a normal 
liquid, the pressure at the bottom of a filled vessel is proportional to 
the height of the liquid. In the case of granular material the pressure 
at the bottom of a sufficiently tall structure is independent of h because 
the friction of the particles along the wall of the container is sufficient 
to withstand the weight of the extra mass placed on its top. For this 
reason, in an hourglass filled with fine sand there is an approximately 
linear relation between filling height and draining time. Granular 
materials also show a phenomenon known as arching (or vaulting). In 
the building of a cathedral, the careful placement of a keystone at the 
top of an arch enables the creation of a vast empty space. Likewise, in 
a random configuration of grains, there will be places where arches 
appear naturally, leaving empty regions below. Granular material is 
inherently inhomogeneous, and the force network providing the 
stab~lity of the system is nonuniform. 

We have long been accustomed to divide matter into gases, 
liquids, and solids. Granular materials cut across these predefined 
boundaries. An example is the transition from solid- to liquid-like 
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