
could alter the excitability of layer 4 neurons 
either by direct synaptic inputs or by affect- 
ing NMDA receptors in layer 4. Examining 
the effect of subplate neurons on synaptic 
responses in the visual cortex should lend 
insight into how these neurons influence 
geniculocortical interactions during the crit- 
ical period. 
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Age-Associated Inclusions in Normal and Transgenic 
Mouse Brain 

Two research groups have used transgenic 
techniques in attempts to induce cerebral 
amyloidogenesis in mice (1, 2). In (I), the 
transgene construct included the human 
amyloid precursor protein (APP) promoter 
and sequence encoding the amyloid P pro- 
tein (PAP). After 6 months of age, these 
transgenic mice developed clusters of PAP- 
positive granules primarily in the hippocam- 
pus. Ultrastructurally, these lesions consist- 
ed of fibrillar material, perhaps within 
dendrites (1). In recent immunohisto- 
chemical studies of a laminin-binding pro- 
tein (LBP) in brain (3) ,  we noted that 
inbred C57BL/6J mice exhibited abnormal 
clusters of LBP-like immunoreactive gran- 
ules that were similar in appearance and 
distribution to the PAP-positive granules in 
PAP-transgenic mice (I). Seen with a light 
microscope, they resemble periodic acid- 

Schiff (PAS)-positive particles that have 
been described in hippocampus of aged 
C57BL/6 mice and aged nude mice (4). 

In normal adult C57BL/6 mice, the clus- 
ters predominated in the hippocampus (Fig. 
1A) and were located mainly in the stratum 
lacunosum moleculare of region CA1 and in 
the molecular layer of the dentate gyms, 
although there was some variability in dis- 
tribution among individuals. The clusters 
were also present in piriform cortex and cer- 
ebellum and were occasionally observed in 
the diencephalon, striatum, and amygdala. In 
adult mice, clusters usually ranged from 30 to 
60 pm in diameter and consisted of 40 to 100 
granules (Fig. 1A). Each granule was typical- 
ly between 1 to 3 pm in diameter, although 
larger granules appeared with increasing fre- 
quency in older mice. 

In addition to having LBP-like immuno- 
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reactivity, the granules appeared to be im- 
munoreactive with polyclonal antisera di- 
rected against PAP, somatostatin, and 
neurotensin (5). However, when appropri- 
ate synthetic peptides were used to preab- 
sorb the antibodies, staining of granules was 
not blocked even though staining of normal- 
ly immunoreactive elements (such as soma- 
tostatin- and neurotensin-containing neu- 
rons) was eliminated, as was staining of PAP 
in concurrently processed brain tissue from 
individuals with Alzheimer's disease (Fig. 2, 
A, B, and C). Affinity purification of the 
antibody to LBP reduced irnmunoreactivity 
of the granules, while it enhanced the typical 
pattern of LBP-immunoreactivity in brain, 
which suggests that LBP epitopes also are 
not expressed in these clusters. Moreover, 
occasional batches of normal rabbit sera and 
control ascites fluid stained the granules. 
The granules also stained with monoclonal 
antibodies to synaptophysin and to laminin 
B2 chain, and a small percentage stained for 
phosphorylated neurofilaments (5), but we 
did not perform preabsorption controls 
with these antibodies. The granules did not 
stain with monoclonal antibodies that rec- 
ognize PAP, APP, microtubule-associated 
protein (MAP2), and calbindin D28, nor 
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were they visualized with polyclonal antisera 
to glial fibrillary acidic protein (GFAP) and 
to vasoactive intestinal peptide (VIP) (5). 
The granules were not b i i e n t  after 
staining with Congo Red, but some of them 
fluoresced afnt staining with thioflavin-S. 
The lesions were positive for PAS and Go- 
mori's methenamine silver stain [Grocott's 
modification (6)], but were not detectable 
with hematoxylin and eosin, cresyl violet, 
thionin, Lux01 fast blue, Bodian's Protargol, 
or acetylcholinesterase stains. 

Combined immunocytochemistry fbr 
LBP and GFAP, as studied with a light 
microscope, suggested that these abnormal 
dusters consisted of intracytoplasmic indu- 
sions that were localized primarily in astro- 
cytic processes (Fig. 2D). Some of the in- 
dusions were amnged around blood vessels 
in a pattern that suggested astrocytic end- 
feet. Ultrastructural examination of thin sec- 
tions adiacent to immunostained semi-thin 
sections'(7) disdosed that the granules were 
composed of unusual intracellular fibrillar 
material (Fig. 3A). In one instance, this 
material was found within an astracytic 
soma (Fig. 3, B and C), and abnormal 
fibrillar accumulations were often located 
within processes that appeared to be astro- 
cytic in origin. Synaptic contacts were not 
present on the membranes surrounding the 
inclusions. The fibrillar material excluded 
nearly all normal cellular organelles, indud- 
ing ghal filaments. Amyloid-like fibrils were 

Fig. 1. Light micrograph of LBP-like immuno- 
reactivity in 25-pm-thick d o n s  duough the 
dorsal hippocampus of (A) a normal 9-month-old 
female C57BL/6 mouse and (B) a normal 
9-month-old f d e  BALB/c mouse. Inset in (A) 
shows a duster (arrow) at higher magni6cation. 
Scale bars: Insct (A) 20 pm; (B) 300 pm. 

not observed in or near the mu le s .  Immu- 
noelectron mi-opic &ysis that used 
antibodies recognking somatostatin re- 
vealed fibrillar inclusions but also many un- 
labeled and only peripherally labeled gran- 
ules, which suggests that more indusions 
might exist within a cluster than are seen 
with a light microscope. 

Clusters were present in adult (7 to 9 
months old) C57BLl6 mice of both sexes 
from two sippliers (8) and were more prev- 
alent in female than in male retired breeders 
of the C57BLl6 strain. Clusters were more 
prevalent in Ace supplied by Jackson Lab- 
oratory (C57BL/6J) than in those supplied 
by Charles River. Laboratories (C57BL/ 
6NCrLBR). No comparable clusters were 

Fig. 2. Immunostaincd tissue from the dorsal 
hippocampus of mice and an individual with 
Alzheimer's disease. (A) Immumdnhg of nor- 
mal adult C57BL/6 mouse tissue with a polydo- 
nal antibody to PAP that had been preabsorbed 
with a synthetic peptide of residues 1-28 of PAP 
[PAP (1-28)]. (B) Human tissue from an indi- 
vidual with Alzheimer's disease stained with PAP 
antiserum. (C) Human tissue fiom the same 
individual with Alzheimer's disease stained with 
PAP antiserum that had been preabsorbed with 
PAP (1-28). (D) Immunostaining of dorsal hip 
v p a l  cissue from normal adult C57BL/6 
mouse with antibodies to LBP and to GFAP. 
Antibody to GFAP alone did not stain the gran- 
ules themselves. Immunoreactive asaocytic indu- 
sion (arrowhead); c e n d y  unstained inclusion 
(open arrow). Scale bars: (A) 20 pm; (B) and (C) 
SO pm; (D) 30 pm. 

found in adult BALB/c and C3H/He mice 
(8) (Fig. 1B). However, in C3H/He mice 
similar lesions were occasionally found in 
hippocampus, mostly among CA2 pyrami- 
dal neurons. 

A dear age-related increase in the number 
of dusters was found in hippocampus of 
male C57BL/6 mice (8) (Fig. 4). Distinct 
lesions were virtually absent in these mice up 
to 6 months of age, but increased markedly 
thereafter. Although 24- to 31-month-old 
mice did not show more dusters compared 
to l&month-old mice as a group, there was 
greater variability in the number of dusters 
in the oldest group compared to l&month- 
old mice. The individual with the greatest 
number of dusters was 30 months of age, 
and larger granules ( > 3 pm) occurred more 
frequently in older animals. BALB/cByJ 
mice (8) showed no dusters at 2 months of 
age, and only a few small clusters were 
detected in the hippocampus of 21-month- 
old BALBIcByJ mice. 

The inclusions in C57BL/6 mice do not 
resemble the extracellular amyloid deposits 
that have been reported in transgenic mice 
that overexpress the entire APP-751 trans- 
gene (2). They also do not resemble glial 
inclusions in human brain, as they differ in 
she, conventional staining properties, ultra- 
structural appearance, and anatomical dism- 
bution from corpora amylacea, Rosenthal 
fibers, and other glial indusions (9). Stain- 
ing properties of the murine indusions sug- 
gest the presence of glycosaminoglycans. 

The ~AP-transgenic mice that develop 
similar granular dusters after 6 months of 
age have a C57BL/6 genetic background (1, 
10). If these dusters in transgenic and 
C57BL/6 mia  are identical, the background 
strains of transgenic hybrids may be the 
major determinant of the presence of indu- 
sions. Our data indicate that the naturally 

Flg. 3. (A) Electron micrograph ofa granule from 
a C57BL.16 mouse showing unusual fibrillar ma- 
terial largely fke of normal cellular organelles. (B 
and C) S i  fibrillar material found in an 
asaocytic soma. Boxed area in (B) is shown at 
higher magnification in (C). Arrow in (C) points 
to glial filaments that bypass fibrillar material. 
Scale bars: (A) 1 pm; (C) 0.5 pm. 
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Age groups (months) 

Fig. 4. Age-related increase in number of inclu- 
sions in brains of male C57BL/6 mice. LBP-like 
immunoreactive clusters were quantified in 25-p.m 
coronal sections through the dorsal hippocampus. 
For each animal, the number of clusters per 
unilateral hippocampus was determined in several 
sections and subsequently averaged. Numbers of 
mice were 6, 5, 4, 9, 9, and 17 at ages 0 to 2, 6, 
9 to 10, 12 to 13, 18, and 24 to 31 months, 
respectively. Error bars represent SEM; ANOVA 
for age effect, F(5,44) = 5.26, P <0.001. 

occurring lesions in C57BL/6 mice do not 
contain amyloid. Even though the PAP- 
transgene is expressed in low amounts (I), it 
may influence the development or composi- 
tion of these abnormal inclusions. 
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publication, transgene-positive mice showed 
the phenotype, -while transgene-negative 
control mice did not. It was brought to our 
attention by D. L. Price that similar deposits 
had recently been identified in nontrans- 
genic C57BL/6 mice. Because of the possi- 
bility of an endogenous genetic contribution 
to the described we extended 
our analysis to additional, and older, trans- 
gene-negative littermates. We found that a 
number of them also had amvloid-like struc- 
tures in the hippocampus. It thus appears 
that the two lines of transgenic mice de- 
scribed in our paper represent sub-strains 
Drone to format&; of these structures. Mice 
from other lines of transgenics with the 
same genetic background (B6D2F1 x ICR) 
appear to have these deposits much less 
frequently. 

This new information raises questions 
about the extent to which the transgene 
contributed to the amyloid-like 
in these mice. Work is under way to show 
whether a transgene-dependent phenotype 
can be induced in other mouse strains that 
are not predisposed to this phenomenon. 
Until then, data in (1) cannot be used to 
support the conclusion that a @/A4 trans- 
gene causes formation of amyloid-like de- 
posits in mouse brain. 
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