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Form-Cue Invariant Motion Processing in 
Primate Visual Cortex 

The direction and rate at which an object moves are normally not correlated with the 
manifold physical cues (for example, brightness and texture) that enable it to be seen. 
As befits its goals, human perception of visual motion largely evades this diversity of 
cues for image form; direction and rate of motion are perceived (with few exceptions) 
in a fashion that does not depend on the physical characteristics of the object. The 
middle temporal visual area of the primate cerebral cortex contains many neurons that 
respond selectively to motion in a particular direction and is an integral part of the 
neural substrate for perception of motion. When stimulated with moving patterns 
characterized by one of three very diverse cues for form, many middle temporal 
neurons exhibited similar directional tuning. This lack of sensitivity for figural cue 
characteristics may allow the uniform perception of motion of objects having a broad 
spectrum of physical cues. 

0 BJECTS IN OUR VISUAL WORLD 

commonly differ physically, such as 
in brightness, texture, or distance 

from an observer. This variation generally 
bears little relation to the ways in which an 
object can move through space. Optimal 
detection of visual motion thus demands 
that the underlying neural apparatus disre- 
gard physical diversity among the cues that 
define moving objects. In this report I pre- 
sent neurophysiological evidence that mo- 
tion-sensitive neurons in the middle tempo- 
ral area (MT) of monkey visual cortex meet 
this demand by expressing form-cue invari- 
ance (1) in their selectivity for direction of 
motion. 

Moving stimuli fall into two broad classes 
on the basis of the spatial characteristics of 
the defining figural cue. The first and most 
typical class consists of moving stimuli that 
are either brighter or darker than their sur- 
roundings. Adopting the terminology of 
Cavanagh and Mather (2), I refer to this as 
first-order motion ( 3 ) .  Consider, alternative- 
ly, the motion percept elicited by a traveling 
wave of flickering leaves arising from move- 
ments of a predator through a forest canopy. 

This complex but biologically significant 
temporal texture (4) is but one instance of a 
second class of visual motion that is clearly 
perceived despite the absence of any unique 
pattern of luminance traceable over space 
and time. More precisely, moving stimuli of 
this second class (i) are discriminable only 
by means other than luminance contrast (for 
example, spatial or temporal texture, stereo- 
scopic disparity) and (ii) have a spatial lumi- 
nance profile that varies during motion. 
Such stimuli have been labeled second-order 
motion (2). 

The descriptive differences between these 
two classes of motion underscore important 
functional differences with respect to the 
mechanisms necessary for their detection. 
Owing to a pattern of luminance that is 
correlated over space and time, first-order 
motion can be detected in conventional spa- 
tiotemporal frequency or energy models for 
motion detection (5, 6). The computations 
utilized by these models may also underlie 
motion detection at early stages in the pri- 
mate visual system, and there is abundant 
psychophysical (5, 7) and physiological (8) 
evidence in support of this possibility. Tra- 
ditional motion models cannot account for 

The Salk Institute for Biological Studies, La Jolla, CA detection of second-order motion (9). How- 
92186. ever, despite the substantial differences be- 
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tween the physical properties of these two 
classes of stimuli and the presumed mecha- 
nisms for their detection, the percept of 
motion [for central vision ( lo)]  has a quality 
that is form-cue invariant (11, 12). This 
perceptual invariance hints of a common 
neural substrate; it seems likely that motion- 
sensitive neurons at an early stage in the 
primate visual system are capable of encod- 
ing both first- and second-order motion. 
Neurons in cortical visual area MT (13) are 
specialized for motion detection, as evi- 
denced by their directional selectivity for 
conventional first-order stimuli (such as bars 
and gratings defined by luminance contrast) 
(14, 15). As a first test of the hypothesis that 
this neural substrate for motion perception 
exhibits form-cue invariance, I examined the 
possibility that the functions of MT also 
include detection of second-order motion. 

I recorded from 1 11 isolated neurons in 
extrastriate area MT of three rhesus mon- 
keys and tested each cell for responses to 
second-order motion (16). Directional selec- 
tivity was assessed with the movement-with- 
out-correlation stimulus, a second-order 
stimulus described by Sperling (1 7) (Fig. 1). 
This type of stimulus, which has been used 
in a number of psychophysical studies of 
motion perception (10-12, 18), is visible by 
a kind of contrast best described as flicker or 
temporal texture. It has the appearance of a 
rectangle of twinkling dots that drifts 
smoothly across a background of identical but 
static texture. The average luminance of this 
stimulus does not differ from the back- 
ground, nor is the spatial foreground pattern 
consistent over time (19). Most cells in the 
sample were also tested for directional selec- 
tivity with a conventional first-order stimulus. 
The latter consisted of a moving, solid lumi- 

nous bar that was identical in all other re- 
spects (size, position, speed, background tex- 
ture, and so on) to the second-order stimulus. 

In agreement with earlier reports (14, IS), 
nearly all cells (82 of 83, 99%) were selec- 
tive (20) for the direction of first-order 
motion. However, 87% (97 of 11 1) of the 
sampled MT neurons also responded selec- 
tively to the direction of motion of the 
second-order stimulus. Ten percent ( 11 of 
11 1) responded to second-order motion but 
were not selective for direction, and the 
remaining cells (3  of 11 1) were completely 
unresponsive to this stimulus. Data from a 
cell typical of those selective for direction of 
second-order motion are shown in Fig. 2A. 
Casual inspection of the responses reveals 
pronounced directional selectivity for sec- 
ond-order motion. Responses were charac- 
teristically weaker than those obtained with 
first-order motion stimuli. but there was 
marked similarity between the patterns of 
directional selectivity elicited by the two 
stimulus types. By contrast, the cell in Fig. 
2B was selective for the direction of first- 
order motion but exhibited no clear direc- 
tional selectivitv for second-order motion. 

First- and second-order direction tuning 
data were subjected to quantitative analyses 
in order to better evaluate relative effects of 
these stimuli (21). One informative compar- 
ison was obtained by computation of the 
angular difference between the preferred di- 
rections of motion seen with first- and sec- 
ond-order stimuli. The mean of the sample 
distribution for these difference measures 
(Fig. 3) did not differ from zero [angular 
mean, 6.2"; P < 0.0001, V test of circular 
uniformity (22)l. Although there were some 
clear examples of neurons with widely dis- 
parate preferred directions, most cells were 

Spatial frequency 

Fig. 1. (A) Schematic depiction of second-order movement-without-correlation stimulus, originally 
described by Sperling (17). Background (a) is a static two-dimensional random dot pattern. On each 
temporal frame, spatially consecutive bar-shaped regions of the pattern (b, c, d, . . . ) are replaced with 
different uncorrelated random patterns of equal density and equal mean luminance. The resultant 
percept is that of a twinkling bar drifting smoothly to the right. (B) Space-time plot of the stimulus 
illustrated in (A). Luminant energy is plotted as a function of time and one spatial dimension (the axis 
of motion). The rightward-moving stimulus appears as a diagonal band of spatiotemporal noise. The 
background pattern is randomly varying in space and constant in time, before (below diagonal) and 
after (above diagonal) the passage of the stimulus. (C) Spatiotemporal Fourier amplitude spectrum of 
(B) (normalized cube-root scaling). The spatial frequency spectrum is broadband because of the 
spatially random background. Absent, however, is any evidence of spatiotemporal frequency interaction 
(for example, diagonal lines), which could be used to identify stimulus direction and speed. For this 
reason, Chubb and Sperling (9) have referred to such stimuli as non-Fourier motion. 

like that shown in Fig. 2A, having similar 
preferences (65% were within 245") for the 
two stimulus types (23). 

Other indices of the relative effects of first- 
and second-order stimuli include compari- 
sons of direction-tuning bandwidth, direc- 
tion bias, and response magnitude. Direc- 
tion tuning bandwidths did not differ for the 
two conditions (Mann-Whitney U). Com- 
parison of directionality indices (1 - oppo- 
site responselpreferred response), however, 
reveals a greater tendency toward bidirection- 

Dlrectlon of motion (deg) 

Fig. 2. Direction tuning of three MT neurons 
tested with first- and second-order motion. (A) A 
cell representing the form-cue invariant (1) class 
of MT neurons, responding with similar selectiv- 
ity to first- (luminance, a )  and second-order 
(temporal texture, 0) stimuli. (B) A cell selective 
for direction of first-order motion ( a )  but with 
no significant preference for second-order direc- 
tion ( 0 ) .  (C) A cell exhibiting similar directional 
selectivity for first-order (luminance, a) and two 
types of second-order (temporal texture, 0; and 
spatial texture, A) motion. Error bars indicate 
SEM. Data were obtained with bar stimuli moved 
in each of eight different directions for five trials 
each in pseudo-random sequence. Sweeps were 
centered on the receptive field of each cell. Stim- 
ulus width, length, and speed were chosen to be 
optimal. 
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