
straints is lessened, we expect that P would 
increase in the direction of unity, which is 
qualitatively consistent with the dependence 
on temperature observed in these experi- 
ments. This would lead ultimately to expo- 
nential relaxation, p = 1 (9). 

Long-lived nonequilibrium states thus 
can result from steric pinning of molecules 
to the adsorbing surface; they need not 
reflect strong adsorption to that surface. The 
ensuing dynamical evolution of the surface 
composition displays a phenomenology 
analogous to the forms of complex dynamics 
that are well known for conventional glasses. 
The dynamic constraints on desorption can 
actually give rise to a divergence of the effec- 
tive relaxation time; the temperature at which 
this occurs is expected to depend on the 
strength of segment-surface adsorption and 
on the density of pinning. Further work in 
which the polymer molecular weights are 
varied shows that displacement is more rapid 
when the chain length of the weakly adsorb- 
ing species is less (1 7 )  but remains nonexpo- 
nential. The physical model suggested here 
may also have a bearing on interpreting dy- 
namic aspects of flexible proteins at surfaces. 
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The Conformation of Fluid Membranes: 
Monte Carlo Simulations 

The conformation and scaling properties of self-avoiding fluid membranes with an 
extrinsic bending rigidity K were studied with the use of Monte Carlo methods. Por K 

= 0, the results are consistent with branched polymer behavior at large length scales. 
There is a smooth crossover from a crumpled to an extended state with increasing K, 

with a peak in the specific heat when the persistence length reaches the system size. The 
scale-dependent effective bending rigidity is a decreasing function of system size for all 
bare rigidities. These results indicate that fluid membranes are always cruqpled at 
sufliciently long length scales. 

EMBRANES COMPOSED OF AM- 

phiphilic molecules, such as the 
monolayers of surfactant mole- 

cules at oil-water interfaces in microemul- 
sions, the lipid bilayers that form biological 
membranes, as well as the layers of surfac- 
tant molecules in recently studied lyotropic 
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liquid crystals, are highly flexible (nearly 
tensionless) surfaces. Membranes play a cen- 
tral role in determining the architecture of 
biological systems and provide the basic 
structural element for complex fluids such as 
microemulsions; an understanding of the 
statistical mechanics of these self-avoiding 
surfaces is therefore of considerable impor- 
tance (1, 2). 

In most cases of interest, these mem- 
branes are fluid, which means that the mol- 
ecules can diffise rapidly within the mem- 
brane surface and possess no reference 
lattice. In the absence of a lateral tension (3, 

4), the shape of the membrane is governed 
by its bending rigidity K. A membrane of 
linear size L exhibits transverse fluctuations 
(5 )  of extension L, - ( k T / ~ ) l l ~ L  (where k 
is Boltzmann's constant and T is temmra- 
ture) on length scales small compared to the 
persistence length (6) 5, = a e x p ( c ~ / k q ,  
where a is a short-distance cutoff and c = 
4n/3 (7, 8). However, as L approaches t,, 
shape fluctuations have been predicted (7, 8) 
to reduce the bending rigidity and lead to a 
renormalized rigidity K, = K - (kT/c) 
ln(L/a) in the limit of small ~ T / K .  On length 
scales L = <,, the membrane should have an 
effective bending rigidity of the order of kT. 
At larger length scales (L >> <,), mem- 
branes fluctuating at constant area are ex- 
pected to have an extremely small bending 
rigidity and behave as crumpled (9) objects 
characterized by the absence of long-range 
orientational order of normals erected per- 
pendicular to  the local surface elements.- or 
a fixed topology, the scaling behavior of 
self-avoiding fluid membranes at these 
length scales is expected to be the same as 
that of a branched polymer (2, 10, 11 ) . 

Several aspects of this scenario have, how- 
ever, not yet been verified. Indeed, there is 
little evidence that self-avoiding fluid mem- 
branes with a finite bare bending rigidity 
really do crumple. It has been speculated (2) 
that self-avoidance may stabilize the effective 
bending rigidity at some finite value K - k T  
and therefore prevent crumpling. Further- 
more, there is some controversy concerning 
the universalitv classes of the various models 
used to describe self-avoiding random sur- 
faces (with K = 0). The most widely studied 
models for these surfaces are constructed by 
taking the elementary 2-cells (plaquettes) on 
a hypercubic lattice and gluing them togeth- 
er in such a way that each edge is shared by 
exactly two plaquettes (1 0). For fixed topol- 
ogy, the long-length-scale behavior of this 
class of surface has been shown to be that of 
a branched polymer: the radius of gyration 
R, of a surface of area S scales as Ri - S" 
( 1 4 ,  with v = 1 in spatial dimension d = 3 
(1 0). Recently, however, randomly triangu- 
lated surfaces of the type we consider here 
have been investigated for K = 0 with the 
use of Monte Carlo techniques (13). A value 
v = 0.8 was reported, implying that such 
surfaces belong to  a different universality 
class. Given the generality of the entropic 
mechanism behind branched polymer be- 
havior, this discrepancy is troubling (10, 
11). 

In this report we present evidence that 
fluid membranes are crumpled at sufficiently 
large length scales for any value of the bare 
bending rigidity and that the crumpled state 
does indeed exhibit branched polymer be- 
havior. Our conclusions are baskd on exten- 
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Fig. 1. Mean-squared radius of gyration R2 versus 
the number of monomers N for A = 0: (6) open 
membrane, ti = 2.0, free-edge boundary condi- 
tion; and ( x )  vesicle, ti = 2.8. The solid line is a 
plot of R: - N. 

sive simulations of a simple molecular model 
for self-avoiding fluid membranes for a wide 
range of bare bending rigidities. The simu- 
lations were carried out with a simple string- 
and-bead model for randomly triangulated 
two-dimensional surfaces embedded in three 
dimensions (13-17). Both planar (with free- 
edge boundary conditions) and spherical 
(vesicle) topologies were considered. In 
both cases the surface is modeled by a 
triangular network of N hard-sphere parti- 
cles of diameter a = 1. The energy assigned 
to a particular codguration is 

where p = l/kT. In Eq. 1, the first sum runs 
over pairs (a,?) of unit vectors {nk) erected 
perpendicular to each elementary triangle in 
the lattice. The second summation is over 
neighboring pairs (i,j) of atoms (located at ri 
and rj) in the array interacting through a 
tethering potential Vt(r) that vanishes for 0 
< r < to and is infinite otherwise. Finally, 
the third summation is over all pairs of 
atoms interacting through a repulsive hard 
core potential VHc(r) that vanishes for r > 1 
and is infinite otherwise. Self-avoidance is 
enforced by choosing an to < tr"; the 
value of 8:" depends on the updating 
procedure that is implemented (see below). 
The continuum limit of the bending energy 
term in Eq. 1 can be shown to be 

where dS denotes the surface element and F,  
is just Helfrich's curvature elastic energy 
with bending rigidity K = A/* (18, 19) 
and Gaussian rigidity K, = - K; H = c ,  + c, 
and K = c,c,, where c, and c, are the 
principal curvatures. 

Our Monte Carlo updating procedure 
consists of two steps: First, we attempt to 
sequentially update the position vector of 
each monomer by a random increment in 
the cube [-s,sI3, where s is a constant to be 
chosen below. The probabilistic decision 
whether to accept the move is made by 
comparing the initial and final energies of 
the system. We chose s so that -50% of the 
updating attempts were accepted. Second, 
we attempt to flip N randomly chosen 
bonds. A bond flip consists of deleting a 
tether and constructing a new one between 
the two previously unconnected vertices of 
the two adjacent triangles. The flip is accept- 
ed with the probability given by the Boltz- 
mann factor if all vertices have a minimum 
of three neighbors (20). Note that this pro- 
cedure does not flip boundary tethers, so 
that the open membranes we simulate have 
perimeters of constant length. A more de- 
tailed discussion of the bond-flipping proce- 
dure can be found in (13-17). 

In order to insure reparametization in- 
variance we use a discretized version of the 
invariant measure $D[r] = IIS [$dr(og3l4- 
(<)I in our simulations, where r(5) is the 
three-dimensional coordinate vector of a 
point on the surface with internal coordinate 
5 andg is determinant of the metric tensor 
(21). We also choose a metric in which all 
internal lengths are equal, that is, all trian- 
gles on the surface are equilateral and of area 
one so that the volume mi of the dual image 
of vertex i (which is the discrete analog of 
the invariant volume $ d25%) is propor- 
tional to the coordination number q, of this 
vertex: oi = qi/3. On the triangulated surface 
the curvature is concentrated at the vertices; 
with the present normalization the scalar 
curvature R, = ~ ( 6  - q,)/qi and the discre- 
tization of the measure is II, dr, of1' (14-1 7 ) .  

Simulations were performed with both to 

= KO and c 8 .  In the former case we 
choses = 0.1 andinthelatters = 0.15. This 
choice of parameters ensures self-avoidance 
when updating the monomer coordinates. 
However, there is only weak self-avoidance 
during bond flipping for to = a. In- 
deed, it is easy to show that implementing 
complete self-avoidance would require tak- 
ing to at least less than V'@ in this case. We 
have in fact observed vesicle inversion for to 
= a when A = 0. Nevertheless, data for 
the mean-squared radius of gyration R: for 
wro bending energy indicate that this does 
not iduence the asymptotic fractal dimen- 
sion of the crumpled phase. Furthermore, it 
does not qualitatively affect the behavior for 
finite A. The primary advantage of using a 
larger tethering length is that the difisivity 
of the monomers in the membrane surface is 
substantially enhanced: the bond-flip ac- 
ceptance rate is a factor of 2 greater for t, 
= a than for KO when A = 0; the 
effect is greater for larger values of A. 

In Fig. 1 we plot data for R: versus the 
number of monomers for the case of zero 
bending rigidity, A = 0. Averages were 
taken over 1 x lo7 to 2 x lo7 Monte Carlo 
steps per monomer. Data are shown both 
for vesicles with to = and planar 
membranes with to = K O .  For both to- 
pologies, the data are consistent with R; - 
Nu (12) with v = 1. Furthermore, typical 
configurations, such as the one illustrated in 
Fig. 2, indicate a "branched polymer" struc- 
ture in which there are long arms extending 
out in various directions. This result sug- 
gests an entropic mechanism that favors 
treelike ramified objects, which is in agree- 
ment with results obtained for random sur- 
faces constructed of elementary plaquettes 
on a cubic lattice (10). For vesicles, our 
results are consistent with S - Ri and V - 
Ri (where S and V are the surface area and 

Fig. 2. Typical configurations of a 
vesicle with N = 247 monomers I =  1.25 

andt, = f i f o r  A = 0,1.25,and 
2.5. I = 2.5 
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Fig. 3. (A) Specific heat obtained by using Eq. 3 
for vesicles with Po = 6 and N = (0) 47, ( x )  
127, and (+) 247 monomers. (B) Effective bend- 
ing rigidity K = ~ , d 6  obtained by averaging over 
N, = (N - 1)/2 contiguous monomers on the 
vesicle surface by using Eq. 5. 

volume enclosed by the vesicle). 
Fluctuations are suppressed for finite A, 

and as seen in Fig. 2, there appears to be a 
crossover from crumpled behavior for A < < 
1 to a rough but extended phase for A > > 1. 
Further evidence for this freezing out of 
degrees of freedom is given by the behavior 
of the specific heat per monomer 

where E = Z(,,p) n;np A plot of data 
obtained for vesicles with 8, = a con- 
taining N = 47, 127, and 247 monomers 
(Fig. 3A) shows that there is a pronounced 
peak near A, = 1.25. Such a peak could 
signal the existence of a phase transition 
between a crumpled phase for low bending 
rigidities and a flat phase for large ones. In 
fact, it is argued in (17) that such a transition 
does indeed occur in membranes without 
self-avoidance. However, the height of the 
peak increases only slowly with N. This 
result implies that the specific heat exponent 
a must be very small (if there is a transition) 
or that the correlation length exponent v 
must be quite large. In addition, the peak 
shifts to larger values of A with increasing 
system size, which is the opposite of what is 
usually observed for finite size effects in 
systems with periodic boundary conditions. 
We believe the most plausible explanation is 
that the peak occurs when the persistence 
length 5, reaches the system size and that 
there is no phase transition. 

An additional confirmation of this inter- 
pretation is given by the behavior of the 
scale-dependent effective bending rigidity 

K , ~  The renormalized bending rigidity can 
be expressed in terms of the mean curvature 
susceptibility as (22) 

m (H(t)H(tf))c (4) 
where (A) is the average membrane area, 
(.-), denotes the cumulant average, and H( t )  
is the mean curvature at 5. In the continuum 
limit, the extrinsic curvature tensor is pro- 
portional to the unit normal vector. The 
discretization (23) of j" d 2 ( m ) ( ( )  we 
use is therefore Z~~lZ,~~, (a , . i2~)  (ri - r,) 1, 
where the i-sum runs over monomers, the 
j(i)-sum runs over the neighbors of i, and si 
is the sign of Ai.2j(i,(ri - r,), with Ai the 
surface normal at monomer i obtained by 
averaging over the normals of all triangles 
that have i as a corner; lq is the distance 
between the two neighboring monomers i, 

j ,  and uy is the length of a bond in the dual 
lattice. For the metric we have chosen, ay/l, 
= l / d  so that the right-hand side of Eq. 4 
becomes 

For vesicles, the amplitude of the average 
in Eq. 4 depends strongly on the size of the 
region over which one averages. In particu- 
lar, in the continuum limit, one finds that 
K,, = 6~ when averaging over one-half of a 
sphere when fluctuations are ignored. Our 
results for K = Kc&, obtained by averaging 
over N, = (N  - 1)/2 contiguous sites on the 
vesicle surface, are shown in Fig. 3B (24); 
K,, is a decreasing function of N for all A. 
There does not appear to be any qualitative 
difference in the behavior of K,, for large 
and small A. 

We have not attempted to make a quan- 
titative comparison with theory in the large 
A regime, because the expected logarithmic 
renormalization of K is completely masked 
by averaging over a finite portion of the 
membrane surface (25). Nevertheless, the 
essential qualitative feature that K,, is a 
decreasing function of length scale in both 
the large and small A regimes supports the 
interpretation that there is no phase transi- 
tion as a function of A. 

Self-avoiding fluid membranes are there- 
fore very likely always crumpled at large 
length scales, independent of the value of 
the microscopic bending rigidity K. Further- 
more, the crumpled state of the model we 
considered is a treelike ramified object char- 
acterized by R: - N, in agreement with 
results obtained for hypercubic plaquette 
models (10) of random surfaces. A more 
detailed analysis, however, is required to 

determine the quantitative scale dependence 
of the renormalized bending rigidity. 

Fluid membranes with a wide range of 
bare bending rigidities have been studied 
experimentally in considerable detail recent- 
ly. For phospholipid bilayers at room tem- 
perature, K / ~ T  = 10 to 20 [see (26-28), 
which contain many additional references], 
so that the persistence length is usually 
much greater than the size of the membranes 
and the reduction of the bending rigidity by 
shape fluctuations is negligible. An excep- 
tionally small value for t,, however, is ob- 
tained for lecithin membranes containing a 
small amount of bipolar lipid (26); this may 
also be the case for surfactant bilayers that 
form lamellar and bicontinuous phases (29). 
These systems are therefore well suited for 
experimental studies of flexible fluid mem- 
branes. 

We have shown that simulations per- 
formed using simple string-and-bead mod- 
els for randomly triangulated surfaces (with 
a wide range of finite bare bending rigidi- 
ties) can yield detailed information on both 
the large-length-scale conformation as well 
as the scale dependence of elastic constants 
such as the bending rigidity. Further numer- 
ical studies of this model and its generaliza- 
tions should permit a more detailed compar- 
ison with experiment and could provide new 
insight into many phenomena involving 
membranes and other self-assembling struc- 
tures. 
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Thermal Conductivity of Monolithic Organic Aerogels 
X. Lu, M. C. ARDUINI-SCHUSTER, J. K u m ,  0. NILSSON, J. FRICKE, 
R. W. PEKALA 

The total thermal conductivity A of resorcinol-formaldehyde aerogel monoliths has 
been measured as a function of density p in the range fkom p = 80 to 300 kilograms 
per cubic meter. A record-low conductivity value in air at 300 K of A = 0.012 watt 
per meter per kelvin was found for p = 157 kilograms per cubic meter. Caloric 
measurements under variation of gas pressure as well as spectral infrared transmission 
measurements allowed the determination of solid conductivity, gaseous conductivity, 
and radiative conductivity as a function of density. The development of such low 
conductivity materials is of great interest with respect to the substitution of environ- 
mentally harmful insulating foams made from chlorofluorocarbons. 

0 PACIF~ED M O N O L ~ C  SILICA AERO- heat transfer by determination of the spectral 
gels (1-3) have smaller thermal con- inErared (IR) optical extinction. 
ductivities than all other thermal insu- These RF aerogels were made by base-cata- 

lants at ambient conditions (4). The reasons lyzed aqueous polycondensation of resorcinol 
include: (i) the high porosity of the SiO, (1,3-dihydroxybenwne) with formaldehyde 
skeleton and thus the small solid conductivity (6, 7). In this polymerization, resorcinol serves 
(5);  (ii) the extremely small pore sizes, typically 
1 to 100 nm across, that cause a partial sup- 
pression of gaseous thermal conductivity (4); 
and (iii) a high specific extinction of thermal 
radiation if an opacifier (for example, carbon 
black) is integrated into the SiO, skeleton (4). 

The smallest conductivity value for an opac- 
ified SiO, aerogel with p = 120 kg mP3 in air 
was measured to be A = 0.013 W m-' K-' 
(4). Such aerogels thus have a large potential 
for applications in freezers and refrigerators as 
well as heat storage and transport systems. As 
nonporous organic materials in general have 
smaller solid thermal conductivities than non- 

as a nifimctional~monorner capable of adding 
formaldehyde in the 2-, 4-, and 6-ring posi- 
tions. This monomer is especially reactive be- 
cause of the attached hydroxyl groups. The 
substituted resorcinol rings agglomerate to 
form clusters 3 to 20 nm across in solution. 
The cluster size is regulated by the concentra- 
tion of the catalyst (for example, sodium car- 
bonate). The clusters have surface groups, such 
as -CH,OH, that react M e r  to form a dark 
red gel. The solution (basically water) in the 
pores of the RF gel is exchanged with an 
organic solvent (for example, acetone) and then 
with CO,. Supercritical drying with respect to 

porous inorganic materials under comparable CO, (temperature T = 31°C, critical pressure 
conditions, we surmised that organic aerogels p, = 74 bar) was performed. The resulting RF 
would provide an even higher thermal resis- aerogels show a considerable mechanical flexi- 
tance than SiO, aerogels. In order to venfy this bility in contrast to their SiO, counterparts, 
assumption we performed caloric measure- which in general are brittle. 
ments on resorcinol-formaldehyde (RF) aero- Aerogels of RF that are 1 cm thick pro- 
gels. In addition we quantified the radiative vide enough IR absorption to be treated as - 

optically thick. Thus radiative transport is a 
ldcal phenomenon that can be desciibed by 

X. Lu, M. C. Arduni-Schuster, J. Kuhn, 0. Nilsson, J. 
Fricke, Physikalisches Institut, Universitlt, Am Hu- the thermal 
bland, D-8700 Wiirzburg, Germany. 
R. W. Pekala, Chemistry and Materials Research Science 
Department, Lawrence Livermore National Laboratory 

Ar = (16/3)n2u~: / [e(~r)~1 (1) 

(LLNL), Livermore, CA 94550. where n is the mean index of refraction of the 

insulation (for low-density insulations, n is 
close to l) ,  u is the Stefan-Boltzmann constant, 
T, is the radiative temperature [calculated from 
the boundary temperatures T, and T, (1, p. 
96) as TP = ( 1 / 4 ) ( ~ ;  + T i ) ( T l  + T,)], and 
the product e . p = E is the extinction coeffi- 
cient, which is equal to l/lPh,,,, where lPh0,, 
is the photon mean free path. In optically thick 
insulations the photon mean free path is very 
small compared to the thickness of the speci- 
men. The temperature-dependent specific ex- 
tinction coefficient e(T,) is derived from the 
spectral specific extinction (Fig. 1) by proper 
spectral averaging (Rosseland mean) (8) .  

The solid conductivity A, of monolithic aero- 
gels strongly depends on the density. For silica 
aerogels, the relation is (9) 

As a pa, where a = 1.5 (2) 

in the density range 70 to 230 kg mP3. The 
conductivity A,,,, for evacuated opacified 
and thus optically thick aerogels can be 
approximated by the arithmetic sum of the 
solid and the radiative conductivity: 

Aevac = As + Ar (3) 

In general A, is much less temperature- 
dependent than A,. If the specific extinction 
shows only a weak temperature dependence, 
an approximate value for e can thus be 
derived from the slope of the A,,,,(T,) 
versus T; curve. The extrapolation A,,,,(TP 
+ 0) yields an estimate for the solid con- 
ductivity. As the organic aerogels cannot 
withstand temperatures above -80°C, the 
available temperature range is too small to 
allow an accurate determination of e. In this 
case the specific extinction in the IR infrared 
must be derived from the specific spectral 
extinction (absorption) with subsequent 
Rosseland averaging (8). 

If air or any other gas is introduced into 
the porous aerogel, the conductivity in- 
creases due to the gaseous conductivity as 
(10): 
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