
In the hippocampus, specific patterns of 
synaptic activity can either facilitate (16) or, 
as shown here, inhibit LTP induction. Fur- 
ther clarifying the rules that govern the 
generation of LTP will be necessary for a 
comprehensive understanding of the role of 
LTP in nervous system function and in 
addition should provide important informa- 
tion for biologically based neural network 
models that incorporate Hebbian synaptic 
modifications. 
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Chondroitin Sulfate as a Regulator of Neuronal 
Patterning in the Retina 

Highly sulfated proteoglycans are correlated with axon boundaries in the developing 
central nervous system which suggests that these molecules &ect neural pattern 
formation. In the developing mammalian retina, gradual regression of chondroitin 
sulfate may help control the onset of ganglion cell differentiation and initial direction 
of their axons. Changes induced by the removal of chondroitin sulfate from intact 
retinas in culture confirm the function of chondroitin sulfate in retinal histogenesis. 

D URING T H E  EAR1.Y STAGES OF VER- 

tebrate retinal histogenesis, undiffer- 
entiated neuroepithelial cells in the 

eye undergo a change in cyt&erentiation 
predominantly toward a committed ganglion 
cell fate (1, 2). It is believed that retinal gangli- 
on cells cease dividing when their somata are 
located at the ventricular surface, that those 
located near the optic fissure achieve maturity 
first, and that difFerentiation proceeds in a 
center-to-periphery sequence (2). At some time 
near the last cell division, ganglion cells project 
axons directly toward the optic fissure (3, 4). 
Although the relationship between morpho- 
genesis of the optic fissure and egress of axons 
from the eye is known (5, 6), the mechanisms 
that control retinal ganglion cell Werendation 
and direct the growth of axons back toward the 
fissure are unknown. 

Molecules that potentially promote axon 
growth in the retina are not distributed in a 
way that could impart precise directional in- 
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formation. Thus, molecules that are repulsive 
to axon growth may be instrumental in neural 
patterning (7). Structurally diverse proteogly- 
cans are abundant in the developing central 
nervous system (8-10) and are found in the 
embryonic retina (1 1, 12). When sulfated 
proteoglycans are enriched relative to 
growth-promoting molecules in the same ter- 
ritory, a boundary is formed that inhibits 
advancing growth cones (13, 14). We have 
localized a chondroitin sulfate-containing 
proteoglycan within the embryonic rat retinal 
extracellular spaces that may help determine 
aspects of ganglion cell differentiation such as 
the polarity of retinal ganglion cell bodies and 
the initial direction of their axons. 

In the rat, the retina is devoid of ganglion 
cells until day 12.5 of embryonic develop- 
ment (E12.5). At this time, the first retinal 
ganglion cells with axons appear just dorsal to 
the optic fissure. Thereafter, axons emerge 
from ganglion cell bodies located progressive- 
ly more peripherally. This process continues 
until E16.5 when the vitreal (inner, facing the 
lens) surface of the retina is completely pop- 
ulated with fasciculated axons. On tissue sec- 
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tions and whole mounts we used two mono- of the chondroitin d t e  proteoglycan (16). 
clonal antibodies (MAbs): TUJ1 (15) to stain On E12.5, the chondroitin sulfate epitope 
neuron-specific @-tub& of both primitive was detected throughout the retina. When 
ganglion cells and older, more mature neu- the retinal neuroepithdium was viewed in 
rons with well-developed axons and MAb aus section, more chondroitin sulfate was 
-56 to localize glymsmhoglycan chains detected in the vitreal side than in the venmc- 

I Fig. 2. The border between high 
and low chondroitin sulfate arpres- 
sion in ;ul E14.5 retinal whole 
mount. (A) Chondroitin sulfate 
(orange) is abundant in the periph- 
ery of the neuroepithelium (mp of 
photograph). Few TUJ1-positive 
cells populate this region. In the 
chondroitin sulfate gradient area, 
TUJ1-positive cells (green) have 
various configurations. TUJ1-pi- 
tive retinal ganglion cells that have 
not sent out axom are found where 
chondroitin sulfate is present at in- 
termediate amounts (opcn arrow- 
head). In areas of lower chon- 
droitin sulfate immunoreactivity, 
retinal ganglion cells send axons 
that curve mward the optic fissure 
(arrow). Axons eventually merge 
inm fascicles (lower pomon of 
photograph). (B) TLJJ1-immune 
reactive cells in the retinal periphery 
found in a retzion similar m that 
marked by thcopcn arrowhead in 
(A). W~thin the peripheral parts of 
the retinal neurccpithelium, TUJ1- 
positive neurons ladung detectible 
axonal processes were situated in 
the chondroitin sulfate matrix (ar- 
row). Scale bar represents 30 pm 
( 4 ;  10 pm (B). 

Fig. 1. Immunocytochemical localiza- 
tion of chondro i~  sulfate by MAb 
CS-56 in (A) E13.0, (B) E14.5, and 
(C) E16.5 retinal whole mounts. TUJ1 
localization at (D) E13.0, (E) E14.5, 
and (F) E16.5. At E13.0 (A), chon- 
d r o i ~  sulfate staining has cleared from 
the center of the retina dorsal m the 
optic 6ssure (arrow). By E14.5 (B), 
CS-56 immunoreactivity is only prcs- 
ent at the retinal periphery. TLJJ1- 
positive retinal ganglion ceh are prcs- 
ent in areas of reduced CS-56 staining. 
By E16.5 (F), the retina is covered 
with mature fasciculated axons and 
chondroitin sulfate is restricted to the 
dorsal and v e n d  poles (arrowheads in 
C). F, fissure. Scale bar represents 50 
pm (A and 1)); 100 pm (B and E); 
300 pm (C and F). 

ular side. In whole mounts (17), radial ne& 
roepithelial cells that had begun to diifknti- 
ate toward a neuronal fate expressed 
p-tub& and were found in the most central 
pomon of the retina, dorsal to the fissure 
(Fig. 1). At the same time of development, 
chondroitin sulfate in that region was mark- 
edly diminished. Axons grew in the vitreal 
margin, but only within the path cleared of 
chondroi~  sulfate leading to the fissure (Fig. 
1A). The pattern of neurons e n d e d  by 
chondroit& sulfate became more distinct by 
E14.5 as the axonal population of the retina 
expanded (Fig. 1E). At the border of the 
ctixximitin sdfate-positive regions, within a 
band -75 p,m in width encornpassiq the 
region of newly recruited neurons, TUJ1- 
positive retinal ganglion cell bodies la&@ 
distinct axons could be seen positioned wherr 
there was variable chondroitin sulfate expres- 
sion (Fig. 2, A and B). Based upon staining 
intensity, we concluded that this zone con- 
tained less chondroitin d t e  than mom pe- 
ripheral regions ofthe retina devoid of w1- 
positive c&, and more than regions where 
more manue neumns conmining @-tubulin and 
with definitive axom wex found (Fig. 2A). 
Thus, the cemifi@ disuibution of chon- 
droitin sulfate mining across this zone may be 
indicative of a local gradient of p-. 

Chondroitin sulfate was progressively lost 
from the central retina (Fig. l) ,  so that by 
E16.5 chondroitin s&te was only located 
at the most dorsal and ventral wks of the 
retinal ne-ithelium. Axoi  filled the 
retina in the characteristic spoke pattern and 
at this stage became highly fasciculated. 

Neurons in vim avoid areas where chon- 
droitin d t e  has been artificially laid in their 
path (13, It?), which suggests that the in vivo 
distribution of chondroitin d t e  could in- 
fluence diifkntiating retinal &on cells. 
To test this, E12.5 and E13.5 retinas were 
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treated in culture with chondroitin sulfate 
ABC lyase (19) (E.C. 4.2.2.4). 

Control retinas, which had no treatment 
or were treated with keratanase or toxin-free 
endoneuraminidase, had the normal CS-56 
staining pattern and did not display mor- 
phological abnormalities (Fig. 3, A and B) 
(20). Axons in control preparations consis- 
-tently grew toward the fissure as in retinas 
taken directly from embryos of correspond- 
ing embryonic stages (21). 

In retinas taken from E12.5 rat embryos 
and cultured in the presence of chondroitin 
sulfate ABC lyase for 48 hours, ganglion cells 
differentiated ectopically and their location in 
the retinal periphery suggested they had dif- 
ferentiated prematurely (Fig. 3, C and D, and 
Fig. 4) (22). Numerous TUJ1-positive gan- 
glion cell bodies were found at the ventricular 
side of the retina with their axons oriented in 
all directions, including directly away from 
the fissure and toward the retinal periphery. 
Thus, the peripheral marginal zone can sup- 

port axon growth, but normally fibers are 
inhibited from entering these regions at early 
stages. When chondroitin sulfate was re- 
moved from older retinas (E13.5) (Fig. 3E), 
the altered regions were shifted peripherally 
relative to those seen when treatment was 
begun at E12.5. Looping axons were found 
near the pupil and some axons were found on 
the ventricular side of the retina. The previ- 
ously formed centrally located axons were 
unaffected by the enzyme treatment. 

As the wave of chondroitin sulfate recedes 
from the fissure during development, it leaves 
at its dissipating edge TUJ1-positive cell bod- 
ies that are shaped like neuroepithelial cells 
that have vitreal and ventricular attachments 
(end feet) but lack obvious axons. These 
radially shaped cells express the TUJ1 epitope 
and therefore may have been primed toward a 
full commitment of the ganglion cell fate. 
When the chondroitin sulfate wave passes 
further over these primed cells, they may 
become fdly determined to project an axonal 
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process, while a new cohort of axonless neu- 
rons is recruited more peripherally. We sug- 
gest that retinal ganglion cell development 
has two generalized phases: cytodifferentia- 
tion of the neuroepithelium into radially 
shaped TUJ1-positive retinal ganglion cells, 
followed by orientation of the axons they 
produce. Thus, the environment could inter- 
act with a postmitotic cell, allowing it to 
express its neuronal phenotype in synchrony 
with its TUJ1-positive neighbors. Removal 
of the chondroitin sulfate matrix would dis- 
rupt this synchronized development. 

Our experimental removal of native chon- 
droitin sulfate from the retina would tend to 
enhance the role of growth-promoting mole- 
d e s  (23-25). In vim, c h o n d m i ~  sulfate p r e  
teoglycan inhibits axon initiation and elonga- 
tion even in the presence of NCAM and 
laminin (13). The inhibition can be overcome 
by increasing the concentration of laminin or 
by enzymatically removing the glycosamino- 
glycan side chains from the core protein (13). 
The disorganized orientation of axon out- 
growth in vivo, after ABC lyase treatment, 
probably reflected a shift in the ratio of growth- 
promoting to growth-inhibiting molecules. 

In enzyme-treated preparations, TUJ1- 
positive cell bodies were found not only in 
the far periphery but also along the venuicu- 
lar side of the retina, where they would not 
normally differentiate. This may be the result 
of cell body migration along the associated 
ectopic axon. Conversely, ectopic differentia- 
tion-could have also affected &on direction- 
ality (6).  We suggest that the enzyme treat- 
ment may have altered the signal from the 
extracellular matrix in the marginal zone to 

Center Periphery 
Reglon of retina" 

Fig. 4. The effect of chondroitin ABC lyase on the 
number of differentiating retinal ganglion cells in 
different regions of the retina not including the 
optic fiber layer. TUJ1-positive cell counts were 
taken from serial sections of five eyes cultured in 
chondroitin ABC lyase (treated, filled bars) and 
five eyes in media alone (control, open bars). 
"Number of cells located midway within the 
retinal neuroepithelium and on the ventricular 
surface. **As viewed in serial sagittal sections (see 
inset top). "Center" refers to the central arc (12O0, 
checkered) of the retina, which corresponds to the 
region populated by retinal ganglion cells in con- 
trols after 48 hours in culture. "Periphery" refers 
to the regions (shaded, dorsal plus ventral retina) 
not included in the central arc. 
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the neuroepithelial end feet, which in turn 
would signal neuronal precursor cells to po- 
larize and Wesentiate in the wrong or 
time. The attachment of both vitreal and 
ventricular end feet and the correct timing of 
their detachment are believed to be critical to 
retinal ganglion cell differentiation, resulting 
in the localization of the cell body at the 
vitreal surface (2, 26). Thus, chondroitin sul- 
fate, perhaps along with other glycosamino- 
glycans, may be a key regulatory factor in 
these phenomena. 

Our results suggest that the graded front 
of chondroitin sulfate that recedes centrifu- 
gally across the retina, perhaps in combina- 
tion with bound tropic and trophic factors 
(27), allows retinal ganglion cells to differ- 
entiate sequentially and polarize their cell 
bodies and axons in their proper orientation. 
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