
NMR Diffraction and Spatial Statistics of - 
Stationary Systems 

Nuclear magnetic resonance (NMR) spatial imaging data may be acquired, processed, 
and interpreted in ways that provide information directly analogous to M a c t i o n  
experiments, with length scales determined by gradient strengths rather than radiation 
wavelengths. This approach, originally considered by Mansfield nearly two decades 
ago, provides access to  autocorrelations of sample density that statistically characterize 
small-scale density variations. These NMR "Patterson functions" can be acquired 
orders of magnitude more rapidly than comparably resolved NMR images and are 
suitable for spatial characterization of small features in bulk samples, such as mor- 
phology in structural materials. Unlike hindered diffusion approaches, neither mobil- 
ity, penetrants, nor transport time are required for examining granularity and porosity. 

P ROPERTIES OF MATERIALS ARE FRE- 

quently governed by small-scale, uni- 
formly distributed morphological 

features, such as domain boundaries and 
pores, whose size and distribution are more 
significant than precise location. Because 
material structural information resides at 
short length scales in small, signal-poor 
regions, applications of NMR imaging to 
materials have not had the spectacular suc- 
cess of biological studies. 

In this report we discuss the use of NMR 
Patterson functions in place of images for 
characterizing small-scale heterogeneities. 
Collective properties are more succinctly 
described and more easily observed with this 
statistical approach. These NMR Patterson 
functions are analogous to the density auto- 
correlation functions of x-ray diffraction (I), 
except that nuclear rather than electronic den- 
sity provides contrast and resolution is deter- 
mined by magnetic field gradient strength 
rather than x-ray wavelength. 

Two main benefits accrue. First, the num- 
ber of data points required for a statistical 
description is much smaller than for imag- 
ing. Although resolution considerations are 
similar for both diffraction and imaging, the 
density of data points that determines the 
extent of the spatial 'kindow" is quite dif- 
ferent: the image must show the entire 
sample, but the Patterson function is appre- 
ciable only over several feature lengths. 
Hence, the required number of points is 
reduced by approximately the number of 
features in the sample, which may easily 
reach lo6 to 10" for small-scale substruc- 
tures. Further reductions are possible for the 
important class of spatially isotropic sys- 
tems, where fdl statistical information is 
available on two-dimensional (2-D) and 
3-D isotropic structures from a 1-D scan. In 
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addition, tighter signal filtering and more 
efficient signal averaging can be applied to 
increase sensitivity. 

Second, with statistical characterization, 
experimental repeatability is possible even 
for mobile systems. For example, it is im- 
possible to repeat imaging experiments for 
noise suppression or multidimensional pur- 
poses for particles undergoing Brownian 
motion, since the "image" is constantly 
Lhanging. However, so long as system sta- 
tistics remain stationary from one scan to the 
next, and motion during each acquisition is 
negligible, repeatability of statistical mea- 
surements is entirely feasible. 

During early development of NMR imag- 
ing in the 1970s, Mansfield and co-workers 
explored analogies between scattering ampli- 
tudes and NMR signals, and even considered 
determination of individual nuclear positions 
from NMR (2-6), although at the time it was 
set aside in favor of imaging approaches (6). 
Structural studies based on mobility devel- 
oped even earlier by using gradient echo 
methods (7, 8) ,  especially the pulsed-gradient 
spin echo (PGSE) experiment developed by 
Stejskal et at. (9, 10). This method not only 
measures &ion coefficients but also pro- 
vides information on microstructures in the 
host material when boundaries hinder normal 
diEwive transport (11-13). 

In 1983, Karger and Heink directly ob- 
tained the distribution P(Ar, t) of displace- 
ments Ar occurring during a transport time 
t by Fourier transforming the PGSE data as 
a function of magnetic field gradient 
strength (14). More recently, Cory and Gar- 
roway (15) demonstrated that for transport 
times so long that initial and final particle 
positions become uncorrelated, the distribu- 
tion P(Ar, t) approaches the fluid density 
autocorrelation function of the particle con- 
tainer (or an average of such functions when 
the system consists of an ensemble of such 
containers). They illustrated this principle 
for water in yeast cells, inferring the cell size 
of 5 pm directly from the displacement 

profile. They also realized that the data, 
regarded as a function of the gradient 
strength, are equivalent to that from a dif- 
fraction experiment, except that the diffrac- 
tion "wave vector" is given by gradient pulse 
strength q = ~ G T  instead of the momentum 
transfer Ak appearing in scattering theory 
(16). (Here y is the magnetogyric ratio of 
the observed nuclear species, G is the pulsed 
magnetic field gradient vector, and T is the 
duration of each of the pair of magnetic field 
gradient pulses.) Callaghan et at. have devel- 
oped this analogy further for porous systems 
(17) and have presented data showing an 
unusual increase of signal amplitude with 
increasing gradient (18) analogous to Debye- 
Scherrer rings in crystallography (16). Invok- 
ing statistical isotropy for their system of 
16-pm polystyrene beads immersed in water, 
they extended data taken along a single direc- 
tion in q-space to a spherically symmetric 3-D 
function. A 3-D Fourier transformation ex- 
tracted the radial density distribution charac- 
teristic of the beads in the sample. These 
developments [which we refer to as &ive 
diEfraction to avoid confusion with the exist- 
ing area of x-ray dynamic diffraction (16)] 
have been recently reviewed by Cotts (1 9). 

Pulsed gradient methods in general are a 
powerful way of characterizing systems 
where diffusion is affected by internal struc- 
ture. Nevertheless, whether diffractive as- 
pects are considered or not, this technique 
becomes inapplicable when transport is too 
slow, fails to reflect structure, or is entirely 
absent. We show here that structural infor- 
mation related to diffractive principles is still 
available for stationary objects, based direct- 
ly on density variation. 

In NMR imaging, spatial information is 
encoded by applying a magnetic field gradient 
G for a duration t so that a particle at position 
r develops a phase k - r ,  where the spatial 
wave vector k is yGt, and where t is the time 
for which the gradient acts. The volume 
density of nuclei p(r) is then extracted by 
Fourier transformation of the signal S(k) 
considered as a function in k-space (20): 

p(r) = \ S(k) exp (-ik . r) d3k (1) 
The Wiener-Khintchin theorem, generally 
applied to stationary stochastic processes, 
relates correlation functions in one Fourier 
domain to the square of their transform in 
the other (21, 22). Applied here, we find 
that the density autocorrelation function 
@(Ar) is given by the Fourier transform of 
the square of the imaging data: 

@(Ar) = (p(r)p(r + Ar)) = 

1 \ ls(k)12 exp (ik r) d3k (2) 
( 2 ~ 1 3 ~  

where ( ) denote an average over position r 
taken within the sample volume V. The 
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autocorrelation function can be regarded as 
a measure of how well the sample density 
comes back into registration with itself 
when displaced along Ar and is directly 
analogous to the Patterson function of x-ray 
scattering (1, 16). When statistics are isotro- 
pic it reduces to a radial distribution function. 
As Mansfield recogmzed, the nonlinear pro- 
cessing associated with squaring the signal 
modulus suppresses signal phase and makes 

image reconstruction impossible (6). Equa- 
tion 2 shows, however, that the remaining 
amplitude-modulated component exiracts 
statistical information from the ori@ imag- 
ing data in a manner analogous to conven- 
tional scattering experiments (1 7, 23). 

Illustrations of this concept are present- 
ed in Fig. 1. Two phantoms were prepared, 
consisting of 7-mm inside diameter glass 
tubes that were packed with nylon mono- 

filament fibers with 0.56- and 0.33-mm 
measured diameters. The tubes were then 
filled with water, which provided a 'H 
NMR signal from the interstitial volume. 

Imaging data were taken on a Nalorac 
Cryogenics Quest 4300 spectrometer oper- 
ating at 185 MHz by using an imaging 
sequence (24) whose excitation pulse select- 
ed a transverse slice -0.5 mm thick. The 
unprocessed 2-D k-space data consist of 
complex numbers and have a rapid phase 
variaeon, but the derived density images of 
p(r) in Fig. 1, A and D, each 128 pixels 
square, both confirm that the imaging sig- 
nals S(k) for the phantoms were correctly 
acquired and that diffusive and convective 
motions are negligible. 

The phase-suppressed imaging data, 
Is(k)12, are shown in Fig. 1, B and E, for 
each of the two s k .  These are the NMR 
"difhction patterns," defined in a k-space of 
spatial frequencies. Since the 7-mm circular 
images span -1 18 pixels, the range is 28.4 
cycles per millimeter in each direction. This 
value determines the spatial resolution and 
depends on the size of the applied field 
gradients. The diffraction patterns show 
rings similar to those from x-ray powder 
patterns of granular structures, indicating an 
underlying regularity in the fiber separation 
(16). The dependence of this pattern on the 
NMR wave vector k = yG7 here is directly 
analogous to the dependence of ordinary 
x-ray patterns on the momentum change Ak 
associated with scattering. 

The Fourier transform of the diffraction- 
data yields fiber statistics even though the 
fibers exclude water and have zero associated 
signal. Indeed, if we express the spatially 
varying water density p(r)aspo-q(r), where 
po is the density of uniform water and q (r) is 
the density distribution of exduded water 
occupied by the fibers, the water and fiber 
Patterson functions are related by 

(p(r) p(r + Ar)) 

= ([PO - q(r)l [PO - ~ l ( r  + &)I) 

= (q(rh(r + Ar)) - 2~o(q(r)) + (3) 
Hence, the correlation functions for a d  
and exduded densities must be equal apart 
from the trivial base-line shift arising from 
the last two terms. Mansfield and Grannell 
(5) have also discussed this point using 
Babinet's principle (25, p. 178). 

The a d  Patterson functions shown in 
Fig. 1, C and F, obtained by Fourier trans- 
forming the difhction data of Fig. 1, B and 
E, respectively, are shown on the same scale 
as the images in Fig. 1, A and D. The 
contraction of data toward the origin indi- 
cates that the fiber arrangement is ordered 
over a range much shorter than the image 
size, consistent with the random padung. 

Fig. 1. (A) Slice image, (B) &mion pattern, and (C) Patterson function for 0.56-mm fibers 
immersed in water in a 7-mm tube. The image shown in (A) is derived by Fourier transformation of 
NMR data, whose square, the NMR "diEraction pattern," shown in (B) reflects packing statistics. 
Fourier transformation of the diEraction pattern yields the Patterson function shown in (C), whose 
central disc refleas the fiber size and whose nearest-neighbor ring indicates packing density. (D) Slice 
image, (E) &&on pattern, and (F) Patterson function for 0.33-mm fibers immersed in water in a 
7-mm tube, to be compared directly with (A) to (C). The images and Patterson functions of the smaller 
fibers in (D) and (F), shown on the same scale, are smaller than those in (A) and (C), but the &&on 
pattern in (E) is expanded relative to (B) since it scales according to spatial frequency. 
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Fig. 2. Patterson functions 
for rotated samples. The (A) 
and (B) correspond, respec- 
tively, to Fig. 1, C and F, 2 

having been obtained from 
samples rotated 45" from 
the latter. ~ h h o y ~ h  the E 011 
small fiber data have few fea- 
tures that follow the rota- -. 
don, the large fiber data 
have secondary peaks which 
do; the latter are attributed - 
to accidental long-range or- 
der arising from finite sam- 
ple statistics. The "square- 
ness" of the nearest-neighbor ring, the slightly di 
crosslike bridges are noise attifacts. 

The Patterson functions exhibit strong cen- 
tral peaks that are autocorrelations of each 
fiber with itself; as expected, these have 
approximately the same diameter as the fi- 
bers. A low-signal region, which indicates 
the excluded volume between fibers, sur- 
rounds this peak, and further out, rings 
appear that reflect the average separation of 
nearest neighbors. 

The symmetry and prominence of these 
nearest-neighbor rings demonstrate the isot- 
ropy and short-range order of the packing 
statistics. These rings occur at -0.7 and 
-0.45 mm, respectively, for the 0.56- and 
0.33-mm fibers, whose diameters would be 
the expected ring radii were the samples 
close packed. On this basis we predict pack- 
ing fractions of (0.56/0.7)2 = 64% and 
(0.33/0.45)2 = 54% for the large and small 
fiber samples, respectively. Comparison of 
the actual fiber count (82 large and 247 
small) with the number that would fit under 
close-packed conditions (-142 large and 
-409 small) yields corresponding ratios of 
58 and 60%. Agreement is better than the 
expected 12% uncertainty in packing based 
on a 6% uncertainty in ring size. 

Fig. 3. Image of 0.1-mm slice of 0.12-mm fiber 
sample. The presence of the fibers is barely re- 
solved in this 128 by 128 point image. The tube 
diameter is 7 mm as above. 

716 

ing image information. Since Patterson 
functions extend over a much smaller range 

function has correspondingly higher resolu- 
tion even though there are still 128 points 

In order to distinguish artifacts from cor- on a side. In addition to reducing noise, the 

-2 

relations, we repeated the experiments after filters prevent aliasing and isolate the signif- 
rotating each sample by -45"; results shown icant central 1.7-mm pomon of the Patter- 
in Fig. 2, A and B, may be compared with son function. The central fiber autocorrela- 
Fig. 1, C and F. (The patterns' inversion don function in Fig. 4 is a cone with a 
symmetry about Ar = 0 follows from their slightly flared base. As expected, the 0.22- 
b e i i  Fourier transforms of real data.) Several mm base radius is equal to one fiber diame- 

than the full image, a correspondingly lower 
sampling rate is required, and noise can be 
reduced by tighter filtering before digitiza- 
tion. An image, obtained conventionally, of 
a 6-mm tube packed with smaller 0.12-mm 

fa& of the large-fiber figures rotate with ter within experimental accuracy. The near- 
the sample, notably the large diagonal back- est-neighbor ring radius is -0.18 mm, 
ground swath and two pairs of peaks just which indicates a 35% fiber-packing frac- 
outside the nearest-neighbor ring. These fea- tion. Pomons of the next-nearest-neighbor 

,:l . - monofilament per function side, of is shown the fibers, same in resolved Fig. sample, 3. The to derived 128 Patterson points from 
o ' i '  - 2 . 0 - 2  data acquired using square law detection 

mm prior to filtering and digitization, is shown 
amond-shaped pattern of the tend peak and the in Fig. 4. Gradients here are four times 

larger than for the image, so the Patterson 

tures therefore represent true a~sotropy and rings are also visible, because tighter filtering 
long-range order, appearing here because of has greatly suppressed noise effects. 
the finite statistics of the relatively small num- These examples show how NMR Patter- 
ber of fibers. This conclusion is borne out bv son functions- can characterize the s~atial 
the weakness of similar structures for th;: statistics of small structures. 0 f  coursh, it is 
small fiber data of Figs. 1F and 2B, which always possible to extract statistical informa- 
reflect the statistics of a larger population. tion-from an image by digital processing, 
However, the "squareness" of the nearest- -but there are compelling advantages for 
neighbor ring, the slightly diamond-shaped adopting the diffraction viewpoint (and 
pattern of the central peak, and the crosslike 
bridges between the&two s t r u m  remain 
fix& and therefore must reflect processing or 
noise artifacts or both. These latter features 
persisted even when Gaussian apodmtion was 
applied to I~(k) r ,  and we believe these are due 
to correlations between signal and noise. 

Assessment of sensitivity and noise is 
complicated by the nonlinear data process- 
ing of this experiment. For example, pro- 
cessing pure noise would reveal the correla- 
tion function of the power spectrum of 
receiver noise, which can be removed by 
subtraction. Only the fluctuations of this 
e sba t e  are a true nuisance. However, the 
signal itself contains random components, 
exemplified by the rotating background 
structures appearing in Figs. 1C and 2A. 
These anisotropic correlations are another 
kind of noise associated with finite sam- 
pling, which represent deviations from the 
ideal correlation for an infinite sample. In 
both cases, signal and noise input give clean 
statistical data, except for fluctuations due to 
finite samphg. 

Diffraction data IS(k)12 are better ac- 
quired by using square law detection to 
suppress rapid phase oscillation characteriz- 

Fig. 4. Patterson function of 0.1-mm slice of 
0.12-mm fiber sample obtained using square law 
d a d o n  and posdiltering. This surface plot was 
obtained from the same sample and point density 
as in Fig. 3, but shows a square centered at Ar = 
0, approximately 1.7 mm on a side (that is, 
expanded four times larger than the image scale of 
Fig. 3). This expansion was achieved by using 
larger gradients in conjunction with square law 
detection and tighter anti-alias filtering. The cen- 
tral fiber autocorrelation function appears as a 
conical structure with a base twice the fiber diam- 
eter. Both nearest- and next-nearest-neighbor 
rings are visible. 
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square law detection), which fall under the 
headings of acquisition economy and, most 
generally, statistical regularity. 

Acquisition economy means that fewer 
points are required to specify the Patterson 
function of a sample compared to its image. 
Although range in k-space (maximum gra- 
dient level and duration) must be sufficient 
for good spatial resolution for both diffrac- 
tion and imaging, density of data points in 
k-space determines the spatial range, and 
this is much smaller for diffraction. 

Statistical regularity refers to the afore- 
mentioned fact that statistical descriptions of 
systems often possess higher symmetry than 
the system itself. We have indicated that 
statistical characterization permits repeated 
signal acquisition for rearranging systems 
when statistical data are time-dependent but 
imaging data are not. Likewise, the rotation- 
al symmetry of Fig. 1, B and E, demon- 
strates angular symmetry, showing how 2-D 
features can be characterized by 1-D radial 
information. The lower density of required 
points allows a correspondingly reduced 
sample rate. The fact that diffraction infor- 
mation resides in an intrinsically narrower 
bandwidth than data for comparably re- 
solved images is encouraging, and prelimi- 
nary results indicate that Patterson functions 
are indeed "cleaner" than corresponding im- 
ages. Signal averaging is quicker because the 
data are simpler, and extensions that would 
impractically lengthen imaging experiments 
become possible. For example, contrast-en- 
hancing preparation sequences (26) may be 
applied to selectively weighted regions ac- 
cording to spectroscopic or mobility differ- 
ences (27) between regions with different 
morphologies or composition. The statisti- 
cal approach described here should eventu- 
ally make NMR studies of small-scale inho- 
mogeneities in plastics, ceramics, and 
structural materials a practical possibility. 
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On the Probability of Matching DNA Fingerprints 

Forensic scientists commonly assume that DNA fingerprint patterns are infrequent in 
the general population and that genotypes are independent across loci. T o  test these 
assumptions, the number of matching DNA patterns in two large databases from the 
Federal Bureau of Investigation (FBI) and from Lifecodes was determined. No  
deviation from independence across loci in either database was apparent. For the 
Lifecodes database, the probability of a three-locus match ranges from 1 in 6,233 in 
Caucasians to  1 in 119,889 in Blacks. When considering all trios of five loci in the FBI 
database, there was only a single match observed out of more than 7.6 million 
comparisons. If  independence is assumed, the probability of a five-locus match ranged 
from 1.32 x 10-l2 in Southeast Hispanics to  5.59 x 10-l4 in Blacks, implying that 
the minimum number of possible patterns for each ethnic group is several orders of 
magnitude greater than their corresponding population sizes in the United States. The 
most common five-locus pattern can have a frequency no greater than about 
Hence, individual five-locus DNA profiles are extremely uncommon, if not unique. 

v NTR (VARIABLE NUMBER TANDEM 

repeat) loci are used to generate the 
"DNA fingerprints" that have been 

presented as evidence in criminal and pater- 
nity cases. These loci are extremely polymor- 
phic, having potentially hundreds of alleles 
at a single locus (1). Any particular genotype 
at a collection of such loci is deemed to be so 
rare that many forensic scientists believe the 
probability two unrelated individuals have 
matching genotypes across a set of loci to be 
extremely small. When many VNTR loci are 
tested (for example, up to five), the proba- 
bility of a matching pattern occurring by 
chance has been reported in criminal cases to 
be extremely small, often on the order of 

to lop8  or even less, and sometimes 
the probability suggests less than one match- 
ing pattern in the total population of North 

America. Yet it is often argued that these 
probabilities are calculated in a conservative 
fashion, that is, the true probabilities are 
even smaller (2, 3). Others have argued, 
however, that the probabilities are invalid 
and are unrealistically small [ ( 4 )  but see (S)]. 

In forensic cases, probability estimates are 
obtained by the multiplication rule. For 
multiplication to be valid, the events must 
be statistically independent. Statistical inde- 
pendence allows one to multiply allele fre- 
quencies within a locus to derive a single- 
locus genotype probability and to multiply 
genotype probabilities across loci to obtain a 
multilocus genotype probability. Statistical 
independence within a locus is referred to as 
Hardy-Weinberg equilibrium (HW), while 
statistical independence across loci is called 
linkage equilibrium (LE) . 

The assumption of independence, both 
within and across loci. has been challenged 
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none of these e h c  components is genetical- 
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