
Antiferromagnetism in Pressure-Amorphized Fe,SiO, 

Amorphous Fe,SiO, synthesized at elevated pressures exhibits a Nee1 transition at a 
temperature identical to that observed in the crystalline form, T ,  = 65 (k2) kelvin at 
zero pressure. This behavior contrasts sharply with observations on other disordered 
systems, such as spin glasses, which characteristically exhibit strong cc£rustration" of 
the spins and consequent marked suppression of the Nee1 transition. 

A MORPHOUS MATERIALS LACK THE 

long-range order of crystal stmc- 
tures (1) but can exhibit ferromag- 

netic ordering (2, 3). Yet oxides, from which 
amorphous materials (glasses) have classical- 
ly been made, often exhibit antiferromag- 
netism in the crystalline state. Although 
much effort has gone into their sn~dy, there 
has been no report to date of glasses that are 
clearly antiferromagnetic (4, 5 ) .  Even a small 
amount of disordering is thought to lead to 
"frustration," arising when it is geometrical- 
ly impossible to satisfy all antiferromagnetic 
interactions simultaneously (6). 

Frustration has been extensively examined 
in spin glasses, and it typically leads to a 
drastic lowering or disappearance of the 
antiferromagnetic ordering (Nkel) tempera- 
ture (5, 7). Indeed, spin frustration is 
thought to preclude true antiferromag- 
netism in amorphous solids (5). We show 
here that amorphous Fe2Si04 produced at 
high pressures exhibits antiferromagnetic 
ordering that is similar to the antiferromag- 
netism o f  crystalline Fe2Si04 fayalite. T K ~  
presence of cooperative antiferromagnetic 
order reveals much about the glass at the 
microscopic level. 

Our samples of Fe2Si04 have been con- 
verted to a glassy state by pressure-induced 
amorphization rather than by the more con- 
ventional approach of rapid quenching from 
the melt (8). Crystalline fayalite amorphizes, 
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upon compression to pressures exceeding 40 
GPa at 300 K (9 ) ,  and we have verified that 
our samples remained amorphous through- 
out the entire study (10). One aspect of 
using pressure-amorphized material is that 
conventional glasses, which are quenched 
from the melt, can contain microcrystalline 
regions and other heterogeneities caused by 
partial unmixing upon cooling. Such heter- 
ogeneities have plagued earlier studies of 
antiferromagnetism in glasses, rendering the 
results ambiguous (4, 11). In contrast, pres- 
sure-induced amorphization is less subject 
to unmixing because there is no thermal 
cycling: during preparation, the sample is 
always kept at kinetically low temperatures 
(8). 

The magnetic susceptibilities of polycrys- 
talline fayalite (the starting material) and of 
pressure-amorphized Fe2Si04 are shown in 
Fig. 1 (12). The temperature-dependent re- 
sults for the crystalline sample compare fa- 
vorably with earlier results, satisfactorily re- 

producing both the Nee1 transition at TN = 

65 ( f 2 )  K and a second apparent transition 
at T' - 23 K. For the polycrystalline sam- 
ples the feature in the susceptibility at 23 K 
is not due to a magnetic-ordering transition 
but is an artifact of summing the suscepti- 
bility in the a, b, and c crystallographic 
directions (13, 14). At higher temperatures 
(>65 K), our crystalline sample behaves as a 
Curie-Weiss paramagnet with an effective 
magnetic moment (expressed in terms of the 
Bohr magneton, kB) of = 6.9 ( fO . l )  

and a Weiss constant of 0 = -99 (-1- 1) K 
(15). 

The magnetic susceptibility of pressure- 
amorphiwd Fe2Si04 is similar to that of 
crystalline fayalite, displaying the transitions 
at 64  (-1-2) and 23 ( f 2 )  K. Within our 
resolution, the Nee1 transition is no broader 
than that of the crystalline material, and 
above TN Curie-Weiss behavior is evident 
with 0 = -94 ( f  1) K and k,, = 4.1 (-1-0.3) 
kB (16). The sign of the Weiss constant (0 < 
0) is significant in proving that the magnetic 
interactions in the amorphous material are 
antiferromagnetic. 

To confirm these results, we collected 
Mossbauer spectra of crystalline and pres- 
sure-amorphiwd Fe2Si0, as a function of 
temperature (1 7). The room-temperature 
spectra of the crystalline and amorphous 
samples are clearly distinguishable (Fig. 2). 
In agreement with earlier studies, both sites 
in the polycrystalline sample were found to 
order antiferromagnetically, as evidenced by 
the appearance of hyperfine splitting at 65 
K, with no transition at 23  K. The results 
for the pressure-amorphized sample, sum- 
marized in Fig. 3, clearly show that magnet- 
ic ordering sets in at the identical tempera- 
ture for the amorphous material, 65 (-1-3) K, 

Fig. 1. Inverses of the magnetic 1 .O 
susceptibilities (x) are shown as a 
function of temperature for poly- 
crystalline fayalite (open squares) 
and pressure-amorphized Fe,SiO, 0'9 

- 

(filled circles). The temperature is .g - 
determined to 0.1 K, and the data = 
are shown relative to the value of 0.8 - 

1/x at 100 K (15, 16). The pres- # - 
sure-amorphized sample was in a a 
magnetic field of 30 kOe, and the 8 0.7 - 
polycrystalline sample was in a field $ a 
of 50 kOe. The straight line is a -aD 
least squares fit of l /x versus T for 

0,6 temperatures above TN, confirming 4 
- 

Curie-Weiss behavior in the para- - 
magnetic regime (X = C/(T  - T,), b 
with C being a constant). The de- 0.5 - 
viation of the observed l/x from 
the Curie-Weiss fit near TN is given 50 60 70 80 90 - 
in the inset (values have been inter- 0.4 

T(K)  
I I I I I I I ,  

polated and smoothed identically 0 20 40 60 80 100 
for both samples; consequently, Temperature (K) 

temperatures are averaged over -2 K). Both samples exhibit a Ntel transition at TN -65 K. The 
transition (T ' )  near 23 K in the polycrystalline sample is an artifact (13, 14), whereas it is a magnetic 
transition for the pressure-amorphized sample. 
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Fig. 3. Spectra of the pres- 
sure-amorphized sample show 
evidence for magnetic order- 
ing of one site at 65 (k3)  K, 
with the other site ordering 
below -28 K. Upon magnet- 
ic ordering the spectrum ex- 
hibits hyperfine splitrings in- 
dicated by the arrows. A fit of 
one singlet (long-dashed line) 
and two doublets (dashed and 
dotted lines) to the paramag- 
netic spectrum of the amor- 
phous sample is indicated by 
the solid line in the 71 K 
Spectrum. 

0.50 
19 4 -3 6 5 6 9 
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Fig. 2. Mossbauer spectra of 57Fe,Si0, at 300 K. 
The points are the spectrum from the pressure- 
amorphized sample, and the superimposed solid 
line corresponds to the crystalline material fit with 
two doublets (shown as dashed lines). 

as for crystalline fayalite (18). However, in 
contrast to the crystalline material, for the 
pressure-amorphized material only one of 
two sites orders at 65 K. The Mossbauer 
spectra show that the second site orders at 
-28 K, the temperature of the second tran- 
sition observed in the susceptibility of the 
amorphous material (Fig. 3). As the two 
materials are distinguishable both by Moss- 
bauer and by susceptibility measurements 
(16), we believe that there is no possibility 

Velocity (mmls) 

order of the structure. 
As the M1-M2 interactions occur over 

distances of 0.33 to 0.37 nm in the crystal, for 
sites 1 to 5 and 3 to 5, respectively (13, 14), 

mum numbers of transition-metal coordina- 
tion shells being -6 and -9, respectively. 
These values are close to, but somewhat less 
than, the number of nearest neighbor shells 
that have been thought necessary for anti- 
ferromagnetic (versus speromagnetic) or- 
dering (5). 

of our amorphous sample being contaminat- 
ed by crystalline fayalite (19). 

For the crystalline material, both M1 and 
M2 sites order at the same temperature (65 
K) (13), whereas for the pressure-amorphized 
sample one site orders at 65 K and the other 

we deduce that spin correlation lengths of at 
least 0.7 to 1.1 nm (two to three transition- 
metal coordination shells) are present in order 

at 28 K. In contrast, previous studies of to yield the observed anti-ferromagnetic be- 
havior of amorphous Fe2Si04. The relatively 
large size of the unit cell of fayalite (a = 0.482 
nm, b = 1.047 nm, c = 0.610 nm) allows 

glasses with antiferromagnetic interactions 
(for example, with antiferromagnetic crystal- 
line equivalents) have revealed that either 
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SINCE THE PUBLICATION OF THE His­
toric Hays, Imbrie, and Shackleton paper 
in 1976 (7), a great deal of attention has 

been given to the origin of the dominant 
100-ky orbital eccentricity signal in late Pleis­
tocene time series of ice volume. Additional 
studies (2) demonstrated that 100-ky fluctua­
tions also occur in other late Pleistocene climate 
series. Although most modeling studies have 
linked the 100-ky ice volume fluctuations to 
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nonlinear interactions between the climate sys­
tem and ice sheets (3), a puzzling dilemma 
arises from examination of climate time series 
from periods earlier than the late Pleistocene. 
Records from the Pliocene and early Pleis­
tocene (—1.0 to 2.4 Ma, million years ago), 
Miocene (—15 Ma), Cretaceous (—100 Ma), 
and Triassic (—200 Ma) also indicate that 
100-ky and sometimes 400-ky climate fluctua­
tions were occurring, but either there is little 
evidence for the presence of extensive ice sheets 
during these times or the ice sheets were fluc­
tuating at other dominant periods (4). Astro­
nomical times series (5) indicate that the most 
important term in the series expansion for 
eccentricity is at 413 ky. Furthermore, many 
of the proxy records are from tropical regions, 

Modeling 100,000-Year Climate Fluctuations in 
Pre-Pleistocene Time Series 
THOMAS J. CROWLEY, KWANG-YUL K I M , JOHN G. MENGEL, 
DAVID A. SHORT 

A number of pre-Pleistocene climate records exhibit significant fluctuations at the 
100,000-year (100-ky) eccentricity period, before the time of such fluctuations in 
global ice volume. The origin of these fluctuations has been obscure. Results reported 
here from a modeling study suggest that such a response can occur over low-latitude 
land areas involved in monsoon fluctuations. The twice yearly passage of the sun across 
the equator and the seasonal timing of perihelion interact to increase both 100-ky and 
400-ky power in the modeled temperature field. The magnitude of the temperature 
response is sufficiently large to leave an imprint on the geologic record, and simulated 
fluctuations resemble those found in records of Triassic lake levels. 
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