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In What Sense Is Turbulence 
an Unsolved Problem? 

Turbulence can be narrowly defined as a property of 
incompressible fluid flow at very high Reynolds number, 
and thus an attempt can be made to specify what is and 
what is not understood about it. The applicability of the 
Navier-Stokes equations of hydrodynamics to real turbu- 
lent flows and the successes and limitations of direct 
numerical simulation are considered. A discussion is 
presented of universality, and mention is made of the 
remarkable success of Kolrnogorov's 1941 scaling ideas 
despite uncertainties about basic underlying assumptions 
such as local isotropy. Extensions of this scaling to the 
multifiactal picture of dissipation fluctuations are dis- 
cussed, but this picture remains phenomenological. Tur- 
bulence as defined above remains "unsolved" in the sense 
that a clear physical understanding of the observed phe- 
nomena does not exist. 

I T IS FREQUENTLY STATED THAT TURBULENCE IS ONE OF THE 

great unsolved problems of classical physics. I agree, but what is 
turbulence, and what do we mean by an unsolved problem in 

classical physics? When a fluid flows rapidly, its flow pattern 
typically exhibits a subtle mixture of order and chaos, and it is this 
structured chaotic fluid motion that we refer to as turbulence. 

Turbulent fluid flows are ubiquitous in the atmosphere, the 
oceans, and the stars. They also occur in a wide variety of engineer- 
ing applications. Most studies of turbulence have an applied objec- 
tive, whether this application be to engineering, to geophysics, to 
astrophysics, or to weather prediction. But is there a basic problem 
in physics common to all of these applications, and in what sense is 
this problem unsolved? 

Navier-Stokes Equations and Statistically 
Universal Behavior 

To define such a problem, I consider a restricted class of flows. I 
neglect density variations, whether these be due to buoyant convec- 
tion or to the dynamic effects of pressure as in flows with high Mach 
number. I neglect thermal effects and all effects of electric and 
magnetic fields. I assume that the fluid satisfies Newton's law of 

The author is professor in the School of Applied and Engineering Physics, Cornell 
University, Ithaca, NY 14853. 

viscosity. We are left with incompressible fluid flow governed by the 
Navier-Stokes equations of hydrodynamics (1). These are partial 
differential equations for a velocity field v(r, t). Because the density 
is assumed to be constant, this field has zerd divergence 

where r is the position vector and t is time. The momentum balance 
of a moving fluid element is described by the Navier-Stokes 
equations 

where p(r,t) is the dynamic pressure field, p is the constant density, 
and v is the kinematic viscosity of the fluid. When supplemented by 
the boundary condition that the fluid in contact with any bounding 
solid surface does not move with respect to that surface, Eqs. 1 and 
2 define the mathematical problem that I wish to study (2) .  These 
equations should accurately apply whenever the density changes are 
small and the flow is slowly varying on a molecular space and time 
scale. These conditions are comfortably met in many observed air 
and water flows on a laboratory or geophysical scale. 

I emphasize one feature of these equations. The kinematic viscos- 
ity v is the only molecular property of the fluid that enters the 
equations. This has the value 0.15 cm2 s-' for air and 0.01 cm2 s-' 
for water. If the density is constant, this is the only way to 
distinguish fluid flows in air from fluid flows in water. This relation 
can be expressed in a well-known, but still remarkable, scaling 
property of the fluid equations. Suppose we have a flow where a 
cylinder of diameter L is placed in a wind or water tunnel with a 
unifom~upstream speed U .  When put in an appropriate dirnension- 
less form, the Navier-Stokes equations contain only one dimension- 
less parameter, the Reynolds number, Re, defined by 

All incompressible flows with the same Reynolds number and the 
same flow geometry should have the same flow properties when 
measured in the appropriate units. This Re scaling is of great 
engineering importance. It is the basis of subsonic wind tunnels for 
aircraft design or water tunnels for submarine design. There is also 
a more basic physical point. If the Navier-Stokes equations apply to 
the physical problem at hand, then Re scaling applies whether the 
flow is laminar and well understood or turbulent and less well 
understood. In fact, Re scaling does work well where it should. Thus 
we have confidence that we are starting from the right equations. 
The only problem is our inability to solve them. In most problems 
in physics, we have a subtle mixture of uncertainty about the validity 
of the equations we study, and uncertainty about how to solve them. 
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Here we have only the latter. 
Qualitatively, turbulence is not a mystery. The Navier-Stokes 

equations are a dissipative dynamical system with many degrees of 
freedom, and the effective number of degrees of freedom increases 
strongly with increasing Re. For low Re, we observe and can 
compute smooth laminar solutions with little spatial structure. As Re 
increases, the generic sequence of events is a transition to a steady 
spatially structured flow, then to a spatially structured and time- 
periodic flow, and then to a flow that is chaotic in time (3) .  This 
behavior is qualitatively similar for different flow geometries but is 
quantitatively far from universal. In this article, I will consider only 
M y  developed turbulence, which occurs for Re's very large com- 
pared to the critical value Re, where chaos first occurs. My hope is 
to find statistically universal behavior for large Re independent of 
the flow geometry. In this article chniversal" means that the 
statistical properties of turbulence are independent of the external 
geometry of the flow, being the same, when properly scaled, for jets, 
for wakes, and for boundary layers. 

Isotropic Homogeneous Turbulence 
High Re turbulence is observed to contain turbulent eddies of 

widely varying size. The large eddies, whose size is of the order of the 
externally imposed length scale L, are not universal. There is some 
indication, however, that the small eddies with size r << L have 
statistically universal properties and are locally isotropic (4, 5) .  Local 
isotropy of the small eddies is essential to the possibility of a universal 
statistical theory, but it is not proven to be true. For now I assume it, 
which allows me to consider a simpler but somewhat artificial 
problem, isotropic homogeneous turbulence (6). The mean flow is 
absent, and all of the interactions are among the turbulent fluctua- 
tions. Whether such a flow exists in nature, it can surely be simulated 
on a computer. Ifthe small-scale fluctuations are locally isotropic, then 
this idealized problem also becomes relevant to experiment. In restrict- 
ing attention to this idealization, I have discarded most of the 
problems of practical interest, which relate to the interaction of the 
mean flow with the turbulent fluctuations. In return, I have the 
possibility of a universal problem in statistical physics. I will argue that 
even this restricted problem is ' ~ o l v e d "  in the sense that a firmly 
based qualitative physical understanding is still lacking. 

Direct numerical solutions of the Navier-Stokes equations are 
limited to modest Re's. Suppose the smallest eddies in a turbulent 
flow are of size q. The number of coupled ordinary nonlinear 
differential equations that must be solved is of order ( L / ~ ) ~ ,  where 
L is a geometrically determined external length scale in the flow 
(such as the diameter of a cylinder in a wind tunnel). Experiment 
and phenomenological theory (see below) indicates that (L/q) scales 
as the 314 power of Re. Thus there are about lo6 degrees of freedom 
in a turbulent flow with Re = 1000, which is about the limit for 
solution on today's supercomputers. But the observed Re's in 
laboratory turbulent flows are of order lo4 to lo5, and in the 
atmosphere of order lo6 to lo7. This is too big a problem to 
compute directly. Direct numerical simulation plays an increasingly 
important role (7), particularly in comparison with relatively low Re 
laboratory flows, but it is not a substitute for a physical understand- 
ing of the universal statistical properties of the flow. 

Kolmogorov Theory and Universality 
The one striking success in turbulence theory is the phenomeno- 

logical picture introduced by Kolmogorov in 1941 (4). The essential 
qualitative idea is a cascade of energy from large scales to small scales 

with an eventual dissipation of the energy by viscosity at the smallest 
scales. At each cascade step, the eddy size changes by some finite 
factor b .  I take b = 2 for convenience, but any other value that is not 
very large will do equally well. As the energy flows toward smaller 
scales because of the nonlinear terms in the Navier-Stokes equations, 
time scales decrease so that the result is an essentially steady state. In 
this steady state one dynamical quantity plays a key role. This is (E), 
the average rate of energy dissipation per unit mass. (I use the 
averaging symbol () to represent a time average in a statistically 
steady state. In a laboratory flow this presents no problems. In the 
atmosphere this introduces subtle questions about relevant time 
scales, which I ignore.) The quantity (E) plays multiple roles. It is the 
rate at which energy is fed into the turbulent fluctuations, it is the 
rate at which energy is transferred from large to small scales by the 
nonlinear terms in the Navier-Stokes equations, and it is also the rate 
at which energy is dissipated at the smallest scales by the action of 
molecular viscosity. 

The 1941 Kolmogorov theory assumes that (E) is the only 
dynamical property of the flow that is relevant. When combined 
with v, the kinematic viscosity of the fluid, the smallest length scale 
in the flow can be calculated by dimensional analysis to be 

q = (v3/(~))lI4 - L Re - 314 (4) 
It should be emphasized that this is a prediction in terms of 
quantities that can be directly measured. In its principal dynamical 
role as an energy transfer rate, (E) can neither be calculated from first 
principles nor-directly measured. But in its role as a rate of energy 
dissipation, (E) can be directly measured if we assume that the 
turbulence is statistically isotropic at the smallest scales. Statistical 
isotropy implies (4) 

where the velocity vector v = (u,v,w), and the position vector r = 
(x,y,z). In Eq. 5 the right side is, to a good first approximation, a 
directly measurable quantity. If Eqs. 4 and 5 are combined, the 
smallest scale in all incompressible turbulent flows is estimated to a 
good approximation. This is an important achievement because there 
is no a priori theoretical basis to know what this scale should be. 

The Kolmogorov theory can be made more quantitative. I 
introduce the velocity structure function 

which is a measure of the kinetic energy per unit mass in eddies of 
size r. By straightforward Fourier transform arguments, this can be 
related to E(k) dk, the kinetic energy per unit mass between wave 
numbers k and k + dk. If the Kolmogorov arguments are correct, 
the energy spectrum E(k) is given by 

where the scaling function Ax) is universal. Because Eq. 7 is 
expressed entirely in terms of measurable quantities, it allows a large 
amount of data to be collapsed onto a putatively universal single 
curve. The measured energy spectrum is divided by ( ~ ) " ~ k - ~ ' ~  and 
is plotted as a function of kq, where q is given by Eq. 4. An example 
of applying this procedure is shown in figure 2 of (1). There is good 
experimental evidence.for approximate universality. 

If I further assume that viscosity plays no role except at the 
smallest scales, then there is a range of scales q < < r < < L, where 
the turbulence is universal, isotropic, and independent of viscosity. 
In this "inertial subrange," the Kolmogorov theory gives, by 
dimensional analysis, that 

which is the famous Kolmogorov five-thirds law. This is equivalent 

31 JANUARY 1992 ARTICLES 567 



to assuming that the scaling function f(x) in Eq. 7 has a finite value 
at x = 0. The five-thirds law has abundant experimental support, 
and the Kolmogorov constant C has an experimental value of about 
1.6. It is not at all clear whether Eqs. 7 and 8 are exactly correct or 
are only a good first approximation. I discuss this point later in this 
article. 

One hope for turbulence theory is to develop a statistical theory 
of turbulence. Typically this gives an approximate nonlinear 
integral equation for the energy spectrum E(k). It is well under- 
stood (8) what features such a theory must have in order to 
reproduce the 1941 Kolmogorov scaling. When the theory has 
these features, it allows a calculation of C and f(x). These 
calculations are usually in good agreement with experiment. 
Because such theories work with only the limited statistical 
information contained in E(k), they give an incomplete descrip- 
tion of the complex structure of the velocity field. Despite this, 
they can be very useful for applications because they allow the 
essential features of the small scales to be described analytically. 
Combining an analytic description of scales smaller than some 
convenient cutoff with a direct numerical simulation of the larger 
scales ("large eddy simulation") is an active and promising ap- 
proach for practical turbulence calculations. 

Up to this point, this article is not very controversial. Most 
physicists and engineers agree among themselves and can get useful 
results. It is not really understood why the 1941 Kolmogorov 
scaling works so well, but this scaling can be built into approximate 
theories. But all is not well, even at the level of the most elementary 
statistical properties. 

I have been considering the equal time spatial correlation 
function (u(x,t) u(x + r,t)), and there is general agreement as to its 
behavior. Suppose instead I consider the one-point time correla- 
tion (u(x,t,) u(x,t, + t)) and its Fourier transform, the frequency 
spectrum E(o).  This describes the distribution of kinetic energy in 
frequency instead of wave number. If there is a mean flow U 
whose magnitude is large compared to a typical turbulent velocity 
u,, then I can use Taylor's frozen turbulence assumption (4), 
which states that the turbulence is swept by our measuring probe 
at speed U with negligible distortion so that frequency and wave 
number are simply related through o = kU. In the universal range, 
this implies that 

In fact, most measurements of E(k) are made with a probe at a single 
spatial point and are based on this assumption. Suppose instead that 
I consider the frequency spectrum measured following a fluid 
particle (in a Lagrangian instead of an Eulerian description of the 
fluid). This spectrum is not subject to direct experimental measure- 
ment, but it can be studied by direct numerical simulation. Dimen- 
sional analysis of the Kolmogorov type can be applied to this 
quantity to give 

where the characteristic frequency w, = ( (E) /V)~/~ .  Equation 10 is 
not controversial, but consider instead a slightly different problem. 
What is the frequency spectrum E(w) measured at a fixed spatial 
point in the fluid in the absence of a mean flow? The most 
commonly accepted phenomenological picture is that the Taylor 
hypothesis applies, but in modified form. The small scales are still 
swept, but now they are swept by the large-scale turbulent fluctua- 
tions that have a typical speed u,. I thus obtain Eq. 9 but with U 
replaced by u,. This result was given explicitly by Tennekes (9) and 
is commonly assumed to be correct. 

More recently, a statistical renormalization group theory of 
turbulence has been applied to this problem f 10). In this theory 

there is no sweeping of the small scales by the large scales, and the 
single point spectrum is given by Eq. 10. Nelkin and Tabor 
suggested (1 1) that experiment favors Tennekes, but at a theoretical 
level this fundamental and rather deep question remains open. It is 
not known for certain if the large eddies sweep the small eddies past 
a fixed probe without distorting the internal dynamics of the small 
eddies. Here there is a disagreement about a qualitative physical 
point, not just about its sophisticated theoretical justification. The 
problem of turbulence, even in our restricted definition, is begin- 
ning to look somewhat more c(unsolved." 

A similar lack of understanding occurs for the question of local 
isotropy. The Kolmogorov theory assumes that turbulence becomes 
more nearly statistically isotropic as scale size decreases, but this 
problem is seldom addressed in a quantitative way. For example, I 
could consider the cospecmun E12(k), which is the Fourier trans- 
form of the cross-correlation function (u(x) v(x+r)). For isotropic 
turbulence this would be identically zero. The conventional view is 
that the mean shear in the flow generates anisotropy and that the 
local cascade processes tend to restore it. This suggests Lurnley's 
result (12) that E,,(k)/E(k) should be proportional to the ratio of 
two time scales. The first is the eddy turnover time for an eddy of 
wave number k, which in the Kolmogorov theory is ((e)k2)-'I3. The 
second is the large eddy turnover time, (Llu,). This ratio of time 
scales goes as kK2I3. There is some experimental support for this 
result (13), but no recent experiments have been performed. Nelkin 
and Nakano suggested (14), from a crude nonlinear dynamical 
model, that anisotropy could relax no faster than kK2I3 but that a 
slower relaxation is possible. Recently, Yeung and Brasseur argued 
(15) that the Kolmogorov idea of local isotropy is wrong and 
supported their argument with direct numerical simulation. They 
suggested that the energetics of the cascade are in agreement with 
Kolmogorov but that a residual anisotropy remains at the smallest 
scales even in the limit of infinite Re. Again there is basic disagree- 
ment about a qualitative physical point, and our problem looks even 
more '(unsolved." 

Are there other statistical properties to which the simple Kolmog- 
orov scaling applies? For example, consider pressure fluctuations. 
Simple dimensional analysis with the same assumptions as before 
give 

p(k) = const. p(~)413k - 713 (11) 

for the spectrum of pressure fluctuations in the inertial subrange. 
This quantity is difficult to measure, and a spectrum as steep as kK713 
is difficult to observe reliably in direct numerical simulation. Thus, 
there is no direct evidence for the validity of Eq. 11. Without a more 
explicit dynamical theory, there is little reason to believe that Eq. 11 
is even qualitatively correct. I return to this point at the end of this 
article. 

As a second example, consider a passive scalar 0 that might be 
temperature or the concentration of a dye marker. The Kolmogorov 
theory was extended by A. M. Obukhov and by S. Corrsin to this 
case [see (4)] and gives 

Ee(k) = const. X(E) - li3k - 'I3 (12) 

where x is the dissipation rate for the passive scalar. There is an 
extensive literature suggesting that Eq. 12 fits reasonably well to 
experiment, but there have always been experimental anomalies. A 
recent analysis by Sreenivasan (16) suggests problems with Eq. 12 
and indicates that there are serious doubts about small-scale 
universality for passive scalars. This result naturally leads to some 
skepticism about small-scale universality of the velocity field, but 
there is less reason to expect universality for the linear problem of 
the passive scalar than for the nonlinear problem of the velocity 
fluctuations. 
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Multifiactal Picture of Dissipation 
Fluctuations 

It has been clear since 1962 that the 1941 Kolmogorov theory is at 
best an incomplete description of the small-scale statistics of the 
velocity field. The experiments that confirmed the five-thirds law for 
E(k)  showed also that higher order statistical properties behave in an 
unusual way. Historically, most experiments have studied the statisti- 
cal properties of a one-dimensional surrogate for the local dissipation 

and its average over a linear interval of length r, 

In Eq. 14, the integral performs a spatial average over an interval but 
no statistical averaging has been performed. The quantity E, is still a 
random variable whose statistics are to be studied. The qualitative 
behavior of E, shows increasing intermittency as r is decreased 
corresponding to an increasing intermittency of ~ ( x )  as Re is 
increased. By intermittency I mean the statistical tendency for very 
large and very s m d  values of the (nonnegative) random variable to 
occur with unusually high probability compared to typical values. 
The probability distribution of E, is far from Gaussian with high 
moments being much larger than their Gaussian counterparts. 

In order to make this discussion quantitative, I consider the 
moments of E, and how they scale with r when r is an inertial range 
distance. I assume for now that this scaling is universal and is 
described by 

For notational convenience (17), I define a "generalized dimension" 
D(q) by 

In 1962, Kolmogorov (18) suggested that E, was a lognormal 
random variable. If its moments go as powers of r, and the behavior 
is universal, then 

where p is a universal constant. In modern terms, it is expected that 
the dissipation field should define a universal function D(q) rather 
than a single constant p. This description, encapsulated in Eqs. 15  
and 16, is equivalent to stating that the local dissipation field is a 
multifractal (19). Recent experiments suggest that Eq. 17  is a good 
approximation for 0 < q < 2. The observed value of p is ap- 
proximately 0.25 and is approximately universal. For larger values of 
q, Eq. 1 7  is known to be theoretically inconsistent (20). It is likely 
that D(q) goes to a finite value in the limit of large q, but the 
experiments for large q are extremely difficult because of the need to 
sample the rare intense events that dominate high moments. 

The above multifractal description gives a good summary of the 
observed statistical properties of the dissipation field. This phenom- 
enological picture raises, however, as many physical questions as it 
answers. Starting from the Navier-Stokes equations, why should the 
dissipation be universal or multifractal? What is the relation between 
the statistics of the dissipation and the statistics of the velocity field? 
In particular, do dissipation fluctuations modify the five-thirds law 
for the energy spectrum? Kolmogorov in 1962 predicted a correc- 
tion of (p/9) to the five-thirds exponent (18). This correction is 
about 0.03 and is probably too small to measure reliably. The 
phenomenological picture that leads to (p/9) has no basic theoretical 
justification, however, so that the question of corrections to five- 

thirds is open both theoretically and experimentally. If I go beyond 
moments of the dissipation and take the multifractal description 
literally, then the dissipation length scale 11 should fluctuate strongly 
from point to point in the fluid (21). This has many observable 
consequences both for local quantities and for a subtle revision of 
the Kolmogorov scaling of Eq. 7. Some of these consequences can 
be tested experimentally, and these tests are of great interest (22). 

Conclusions 
Throughout this article, my discussion has emphasized universal 
statistical properties, and I have not connected these to the actual 
geometry of the small-scale structures in turbulence or to dynamical 
mechanisms. These connections are only beginning to be developed, 
for example, in (7). As a final example, however, I discuss one 
problem for which these two points of view collide in a striking 
manner. If one takes the divergence of the Navier-Stokes equation, 
one obtains 

Equation 18 states that the local pressure is ihe solution of a Poisson 
equation whose source is the difference between the squared vortic- 
ity W' and the squared rate of strain 2. Both of the latter are highly 
intermittent in space, and it is therefore reasonable that their 
difference and consequently the pressure are also highly intermit- 
tent. In a recent article, Douady (23) presented a technique for 
direct visualization of the high- and low-pressure regions of a 
turbulent flow and interpreted the results in light of Eq. 18. The 
results suggest that pressure fluctuations are dominated by intermit- 
tency and that Eq. 11 may very well be qualitatively incorrect. 

I have restricted the discussion to a particular turbulence problem, 
the putatively universal statistical properties of the small-scale veloc- 
ity fluctuations in incompressible flows with high Re. I have found 
that phenomenological theory gives a compact description of a large 
amount of data. There is an adequate theoretical starting point in the 
Navier-Stokes equations. There is a useful phenomenological pic- 
ture that suggests at least approximate universality. It is not known 
if this universality is exact, and I cannot say from first principles 
whether it should be (24). Even in the restricted sense that I have 
defined turbulence, it remains a fascinating unsolved problem. In the 
next several years I expect that new carefully controlled experiments, 
improvements in direct numerical simulation, and better mathemat- 
ical understanding of the underlying Navier-Stokes equations will 
combine to increase our basic understanding. I also hope that basic 
progress in statistical field theory will add essential contributions 
from theoretical physics, but nothing so far has given much sub- 
stance to this hope. 
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Lunar Im~act Basins and Crustal 
~etero~eneit):  New Western Limb and 

Far Side Data from Galileo 

Multispectral images of the lunar western limb and far 
side obtained from Galileo reveal the compositional na- 
ture of several prominent lunar features and provide new 
information on lunar evolution. The data reveal that the 
ejecta from the Orientale impact basin (900 kilometers in 
diameter) lying outside the Cordillera Mountains was 
excavated from the crust, not the mantle, and covers 
pre-Orientale terrain that consisted of both highland 

materials and relatively large expanses of ancient mare 
basalts. The inside of the far side South Pole-Aitken basin 
(>2000 kilometers in diameter) has low albedo, red 
color, and a relatively high abundance of iron- and 
magnesium-rich materials. These features suggest that the 
impact may have penetrated into the deep crust or lunar 
mantle or that the basin contains ancient mare basalts that 
were later covered by highlands ejecta. 

T HE GALILEO SPACECRAFT ENCOUNTERED THE EARTH- 
moon system in December 1990 in the first of two flybys 
that are part of a sequence of planetary gravity assists that 

will deliver the spacecraft to Jupiter. The geometry of the flyby was 
such that the western limb of the moon was illuminated (I), in 
contrast to the Apollo missions, during which the eastern limb was 
illuminated to ensure safe descent and landing. The geometry of the 
Galileo flyby provided the oppormnity to obtain multispectral 
images of the western part of the lunar near side, the western limb 
(including the Orientale basin), and parts of the lunar far side, all 
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relatively unexplored regions of the moon. These data provide impor- 
tant information on crustal heterogeneity and the nature of impact 
basin formation. In this article we describe these data and their 
implications for knowledge of lunar composition and evolution. 

The lunar crust is composed of two components. The globe- 
encircling highland crust formed in earliest lunar history and was 
highly modified during the period of heavy bombardment; abun- 
dant impact craters and large impact basins such as Imbrium and 
Orientale remain from this period. Subsequent interior melting 
produced volcanic surface deposits. These surface flows form the 
second component of the crust, the maria, which accumulated 
primarily in the old impact basins and which cover less than about 
20 percent of the lunar surface. Impact events have fragmented the 
surface at all scales so that it is covered with a surface layer of crustal 
material called regolith. Larger impacts excavate material from 
greater depths, perhaps as deep as the lower crust or underlying 
mantle. Although these general relations are understood, many 
questions remain regarding the composition and time of onset of 
mare volcanism and the lateral and vertical compositional heteroge- 
neity of the highland crust, particularly on the far side of the moon, 
where little compositional data are available. 
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