
Magnetic Flux-Line Lattices and Vortices in the 

Copper Oxide Superconductors 


A variety of recent experiments on both the static and the 
dynamic properties of vortices and flux-line lattices in the 
mixed state of the copper oxide superconductors are 
discussed. The experiments are of two basic types: (i) 
experiments that image the magnetic flux patterns either 
with magnetic decoration or neutrons and give informa- 
tion about static structures, and (ii) experiments that 
explore the dynamics of vortices either through the resis- 
tivity or other electrodynamic responses of the material. 
Results of these experiments argue in favor of the exis- 
tence of a true phase transition in the high-field vortex 
state from a low-temperature superconducting vortex 
glass phase into a disordered high-temperature vortex 
fluid phase. The vortex glass phase transition model does 
a good job of explaining high-precision measurements of 
the dynamics at the transition. At low fields and temper- 
atures, very long range hexatic order in the flux-line 
lattice is observed. 

THE BEHAVIOR OF SUPERCONDUCTORS I N  THE PRESENCE OF 

a magnetic field has been the subject of much scientific, as 
well as practical, interest over the past few decades. On the 

practical side, the design and performance of superconducting 
magnets are often limited by the suppression of superconductivity in 
large magnetic fields. The behavior observed in various experiments 
on superconductors in a magnetic field is quite diverse, and its full 
elucidation is a substantial scientific challenge. Discovery of the new 
copper oxide high-temperature superconductors has spurred a sig- 
nificant reexamination of this subject. These materials exhibit phe- 
nomena that were not detected in previously studied superconduc- 
tors. They also have the potential to remain superconducting at 
much higher magnetic fields than earlier materials and thus may 
eventually allow the construction of higher field magnets. 

New theoretical approaches to the behavior of superconductors in 
magnetic fields have been explored, based on recently developed 
concepts in the theory of phase transitions and ordering in con- 
densed matter. Some of this theoretical work is discussed below, but 
the main focus of this article is on experimental work that explores 
the behavior of the copper oxide superconductors. These systems 
exhibit an enormous variety of interesting regimes, many of which 
have not been carefully studied and only a few of which will be 
discussed here. The materials can range from those that are highly 
anisotropic, like Bi2Sr2CaCu20, [BSCC0(2212)], to ones that are 
much less anisotropic, like YBa,Cu,O, [YBC0(123)]; the magnetic 
fields of interest range from 1to over 10' G, and the field may be 
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oriented at any angle with respect to the crystalline axes of the 
material; the temperatures of interest range from a few up to 100 K; 
and the behavior as a function of the electrical current density in the 
material is also of much interest. 

These materials are type I1 superconductors, because they can 
remain superconducting when a magnetic field penetrates the ma- 
terial. (Type I superconductors, on the other hand, lose their 
superconductivity as soon as the field penetrates.) The basic theory 
of how type I1 superconductors behave in a magnetic field was 
developed by Abrikosov (1). He showed that, in type I1 supercon- 
ductors, the magnetic field, when greater than the lower critical field, 
Hc,, and less than the upper critical field, H,,, penetrates the sample 
in the form of quantized flux lines, each carrying exactly one 
quantum, +, = hc/2e, of magnetic flux, where h is Planck's constant, 
c is the speed of light, and e is the electronic charge. The supercon- 
ducting order parameter, q,which is a complex scalar field repre- 
senting the quantum-mechanical wave function of the paired elec- 
trons, has a vortex line for each quantized flux line. If we take W = 
IWI exp (i+), the magnitude IWl of the order parameter vanishes at 
the center of each vortex line, whereas the phase + changes by 27r as 
one makes a full circle around a single vortex line. In the Abrikosov 
vortex lattice phase of a type I1 superconductor, these vortex lines, 
which run parallel to the magnetic field, are arranged in a regular 
hexagonal crystalline array (as shown in Fig. 1A). 

Soon after the discovery of the copper oxide high-temperature 
superconductors, it was shown that the resistivity in the temperature 
and magnetic field regime where the Abrikosov vortex lattice was 
expected to form behaves in a qualitatively different fashion from 
that found in previously studied type I1 superconductors (2). The 
reason for the difference, we now know, is that strong thermal 
fluctuations cause the vortex lattice to melt into a vortex fluid [see, 
for example, Gammel et at. (3) and Nelson and Seung (4 ) ]  well 
below the temperature at which the local W is driven to zero (Fig. 
1B). This contrasts with the phase diagram for conventional super- 
conductors (Fig. lA), where thermal fluctuations are unimportant. 
For magnetic fields greater than Hc2as estimated within mean-field 
theory assuming no thermal fluctuations, H Z ~ ,  the local W is driven 
to zero: this is the normal state. In the absence of thermal fluctua- 
tions and pinning-induced disorder, the vortex lattice would form 
for all fields below H Z ~ .  However, in the presence of strong thermal 
fluctuations, as are important in the copper oxide superconductors, 
the vortices do form in the vicinity of ~z~but remain in a strongly 
fluctuating vortex fluid state down to significantly lower tempera- 
tures and fields before freezing. Because of imperfections in the 
materials, the vortex fluid freezes into a superconducting vortex glass 
as discussed below. The vortex fluid regime had been known to 
occur for thin-film superconductors (5 ) ;the copper oxide supercon- 
ductors are the first bulk materials for which its existence has become 
readily apparent. Before discussing why this is the case and what this 
implies for the materials' resistivity, let us first briefly discuss what 
happens at much lower fields. 
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When the magnetic field penetrating a type 11 superconductor is - . -  

verv small. it &netrates in- the form of isolated flux lines. each , . 
carrying a vortex line and a quantum, $,, of magnetic flux. A cross 
section of one of these vortex-flux lines reveals two characteristic 
length scales of the superconductor (1) :  The magnitude of Y is 
si@cantly suppressed only in the core of the vortex, which is of 
size 6, the superconducting coherence length. At low temperatures, 
6 measures the spatial extent of the Cooper pairs of electrons and is 
believed to be less than 20 r f  for the copper oxide superconductors. 
This very small coherence length is one thing that makes the copper 
oxide materials qualitatively different; previously known supercon- 
ductors generally have much larger coherence lengths. The coher- 
ence length grows as the temperature is increased and diverges to 
infinity at the transition temperature, T,. 

The magnetic field in an isolated vortex-flux line is contined by 
screening currents that d a t e  around the vortex, with the field 
intensity decaying exponentially as one moves far away from the flux 
line, the decay length being the magnetic penetration depth, A. This 
length [A 2 1400 r f  for YBC0(123)] fir ex& 6 in the copper 
oxide.superconduaors. A superconductor is type 11 when A > 
E J f i ;  the copper oxide superconductors are strongly type 11, that is, 
A > > 6 or the Ginzburg-Landau parameter K = Ale > > 1. In the 
low-field regime the spacing between flux lines a, is greater than A, 
so the tubes of flux do not strongly overlap. For A = 1400 r f  this 
corresponds to fields below 1000 G. When one is well within this 
regime, the pattern of magnetic flux emerging from the d a c e  of a 
sample can be imaged by the Bitter decoration technique; results of 
such studies are described below. The interaction energy between 
flux lines also decays exponentially with a decay length of 2; for a 
perfectly dean material the vortex-ilux line lattice should then melt 
at low fields (thus large spacing between flux lines) when this 
interaction energy, which s t a b h  the lattice, becomes too small to 
withstand the thermal fluctuations of the ilux lines. At these low 
fields the vortex lattice would also be easily disordered by random 
pinning. This result has been seen in the decoration experiments and 
is discussed below. 

In the high-field regime, the flux lines are strongly overlapping, so 
that the spacing between them is less than A. In this regime the 
magnetic field & the material is fairly d o r m ;  it remains higher at 
the vortex cores than in between the vortices, but the &rence is 
smaller than the average field. In the extreme type II limit, this 
difference is simply proportional to $dh2. Thus, in this regime, it is 
not really appropriate any longer to describe the system as one of 
flux lines. However, the positions of the vortices and their normal 
cores remain well defined because a, > > 6, where a, is the spacing - - 

between vortices. 
There are four (not completely unrelated) factors that make the 

vortex fluid regime in the high-field phase diagram large for the 
copper oxide superconduaors: (i) high temperatures that cause 
larger thermal fluctuations; (ii) small 5, which allows the vortices to 
form at a high field w = $d(2.rrS2); (iii) large A, because the 
interactions between vortices in this high-field regime are propor- 
tional to l/h2 and therefore small, and (iv) strong anisotropy (these 
layered materials have very anisotropic normal-state conductivity 
and supercurrent densities,-decting the fact that the carriers move 
readily within the copper oxide layers but hop much less readily 
between layers). The effective mass anisotropy r r (m~m,,) '~ can be 
at least as high as 200, as compared to 1 in conventional supcrcon- 
ductors. This anisotropy results in a reduced interaction between 
vortices in different copper oxide layers. The reduced interactions 
here and in (iii) allow larger thermal fluctuations of the vortices. 

What do the vortices have to do with the important practical 
property of a superconductor, namely, its electrical resistivity? For 
fields below w, the primary source of resistivity is dissipation due 

to motion of vortices across the current (6). Thus, in order for a type 
11 superconductor to have zero reskhvity when vortices are present, 
one must prevent all the vortices from moving. This actually does 
happen at low enough temperatures because the vortices get pinned 
to imperfections in the materials. As dkcused above, Y is s u p  
pressed in the core of a vortex. The energy cost of this suppression 
of the superconductivity depends on the local environment, typically 
b e i i  reduced near chemical or structural imperfections in the 
material where the superconductivity is weaker. At low tempera- 
tures, the vortex will thus tend to get pinned at such places where it 
has a lower energy. 

What effect do such randomly placed pinning centers have on the 
Abrikosov vortex lattice? Larkin and Ovchinikov (7) calculated the 
resulting distortions of the lattice, showing that the long-range 
crystalline order of any lattice in less than four dimensions is 
destroyed by even weak pinning. The resulting vortex pattern 
should have short-range crystalliw order, but the crystalline order is 
disrupted at long distances. However, as we show below, the lattices 
can still have quite long-range orientational order. An important 
question about the resulting pattem is: Are the vortices mobile, 
Gulting in a nonzero resistivity? The answer was believed for many 
years to be yes." The total pinning energy for each finite region 
with short-range vortex lattice order is finite. Thus, if each such 
regjon of vortices is assumed to be able to move without consider- 
alon of its interactions with other regions, the fiee-energy barriers, 
U,, that would have to be surmounted are finite. This assumption 
l e a d s t o a d k a m a y . ~ ~ s ~ t y ~ r o p o r t i o n a l m ~ ( - ~ & ~  T )  
(where k, is the Balm constant and T is temperature), which 
may be very small but remains nonzero for all positive temperatures. 

However, it has recently k n  argued by Fisher (8) and Fisher, 
Fisher, and Huse (9) that random pinning instead turns the vortex 
lattice phase into a vortex glass phase, where the vomces are frozen 
into a parti& random pattern that is determined by the details of 
the pinning in the particular sample b e i i  considered. In this vortex 
glass phase the vomces are not mobile so the ohmic linear resistivity 
is strictly zero below the phase transition into this phase at a 

Fig. 1. Schematic phase diagrams 
for dean conventional supe~onduc- 
tors where thermal fluctuations and 
pinning are unimportant (A) and for 
high T c  superconductors where they 
are important (B) as functions of 
temperature, T, and applied mag- 
netic field, H. Note that the field 
scale is broken and highly distorted 
in (B); for the copper oxide super- 
conductors, Hcl ( T  = 0 )  is at least 
several ordm of magnimdc smaller 
than Hc2 (T = 0) .  The range of 
stability of the states with long- 
range hexatic comlations is uncer- 
tain. Although dney were observed 
at low temperatures, they may only 
represent equilibrium near Tc, 
where they were frozen in upon 
cooling. 

SCIENCE, VOL. 255 



temperature Tg. The phase is named vortex glass by analogy with 
the spin glass phase of random magnetic materials and was first 

Christen et al. (14)l. In the copper oxide superconductors, the use of 
neutron diihctio; has ~roven &cult because of the vroblems of 

i n d u c e d  fbrrandom arrays of ~ose~hson junctions by Shih, 
Ebner, and Stroud (10). 

In both the vortex fluid and vortex glass phases, an instantaneous 
snapshot of the vortex pattern shows no apparent long-range order. 
However, in the vortex fluid phase the vortex pattern is constantly 
rearranging, so the codations between the superconducting order 
parameter, Y(r), at pairs of points in space decay with distance 
between the two points, vanishing at large distances. In the vortex 
glass phase, on the other hand, there are long-range correlations 
between Y(r) and Y(rf ) even fbr pairs ofpoints r and r' that are well 
separated. These correlations are not in a simple pattern but rather 
form a static but random pattern that is determined by where all the 
vortices are located in their fimen con6guration. As the vortex glass 
phase is approached h m  the vortex fluid phase, these long-range 
comlations develop continuously, with the vortex-glass correlation 
length, t,, - ( T  - T,)-", where v is a critical exponem, diverging 
as a power of the temperam difference fiom the transition. The 
scaling thwry of this continuous phase transition has been con- 
firmed in experiments by Koch et al. (1 1) and Gammel et al. (12) on 
samples of YBC0(123), as discussed below. 

Having now briefly summarized some of the theomical ideas about 
fhnr b v w t e x  pattarrs and dynamics in type I1 !nlpemnd-, let 
us now desaibe some of the recent expahents done on the copper 
oxide high-temperatme s u p e x o n d ~ r s .  Thest expecknts are of 
two basic types: the first dicecdy probe the patbans of magnetic fhnr 
either by magnetic decoration or by neutron scatterin& whereas the 
second probe the dynamics by studying the elcctrical conductivity or 
other el-c pmperties of the mateds. 

In principle, it is possible to study the spatial order of the vortex 
lattice with neutron diffraction, which has been used to study 
conventional type I1 superconductors [Schelten et al. (13) and 

Flg. 2. CoUagc showing the 
flux lines in a supcrconduct- 
ing sampk of BSCCO at a 
field of8 G and a tempera- 
ture of4.2 K. The individu- 
almagncticfhalincsarethc 
white spots in the phaco. 
Thc fha lines were made 
visibk by b t i o n  with 
magnctic particles, and then 
thcy wcrc imaged with an 
clamm microscope. The 
distamrbctweenfluxlimsis 
appxiUMte1y 1.7 pm, and 
the field is orkntcd parallel 
to thec axis ofthecrystal. 

obtaining large single& samples and the fact that ;he intensity 
of Bragg scattering h m  the vortex lines is proportional to the 
square of the magnitude of the magnetic field contrast in the mixed 
state, which is very small because of their large London penetration 
depth A. Focganet al. (15) detected neutron W c t i o n  h m  a vortex 
lattice with HI12 in YBC0(123) and showed that the diffracted signal 
finm the (10) Bragg refleaion of the vortex lattice is proportional to 
d lom4 ,  where d10 is the (10) plane spacing. Their signals are barely 
observable over the background b m  the YBC0(123) and would be 
smaller by mughly an order of magnitude fbr BSO(2212).  Nev- 
enheless, neutron scattffing has the potential for studying the order 
paraUeltothevocticesasdasperpendicular,canbepe&cmedon 
;he same sample as a W o n  &fidd and t e m e  and is a true 
measurrment of bulk propenies. For now, we must be content with 
studyingtheordaofthevormrlamces withdirrctimagingtech- - - 

ni& that do not allow this flexibility. 

Static Flux-Lattice Structures fbr Low 
Temperatures and HIP 

Direct information on the ordering ofthe magnetic vomces in the 
mixed state of the high Tc superconductors can be obtained through 
the use of the Bitter imaging technique (16) in which samples are 
cooled in an applied magnetic field and subsequently exposed to a 
smoke of ferromagnetic partides formed by evaporation into a 
helium buffer gas. The technique was pioneered by Trauble and 
Essmann (17), and Sarma (18) to study individual vortices. The 
fmmagnetic pactides travel down magnetic field lines outside the 
surface of the superconducting sample and form clusters on the 
surface, which decorate the locations of the vortices. The partides 
stick to the s u c k e  with van d a  Waals forces. The applied field is 
then removed, the sample is wanned to room temperature, and the 
dusters of pactides are viewed with an electron microscope. 

Direct d-space imaging of the arrangement of individual vom- 
ces provides information on both the translational and bond- 
orientational order of a two-dimensional slice of the vortex lamce as 
it pierces the sample surface. Present experiments have been limited 
for the most part to field-cooled samples at T = 4 K, subsequently 
viewed by scanning electron microscopy, for which &aent con- 
trastisobtainedwhenvorticesareseparatedbyrougY.ao> 0.3 pm 
(H < -200 G). &low this separation (or above this field), the 
fkmmagnetic pactides have a tendency to form strings by dipole- 
dipole interaction and the decorated image becomes &cult to 
interpret. One must take into account the demagnetizing kctor of 
the sample to detemk the actual magnetic field in the bulk of the 
sample. Most of theAsamples studied to date are thin slabs of - 1 mrn 
e~tent~along the a, b axes and -5 to 30 pm thickness along 2. The 
a and b axes span the copper oxide layers of these materials, while 2 
is normal to the layers. For H along 2, vomm penetrate the sample 
at H - 0.5 G, rather than the measured Hcl of -150 G, owing to 
this demagmizbg effect. The Bitter decoration technique is Limited 
to a static snapshot of the vortex lattice ammgement in the sample 
averaged over the time rrquired to decorate-abut 1 s. Also, 
because there is pinning and possibly entanglement of the vortices, 
the actual temperature during the sample cooldown at which the 
microscopic arrangement of vortices goes out of equilibrium and 
freacs into the resulting Bitter pattern is cumntly unknown. This 
temperature must lie somewhere between the temperature at which 
the bulk dc magnetktion goes out of equilibrium, Th which for 
these low fields is quite dose to T, and the lowcst temperature 
obtained in the decoration experimenf which is 4.2 K. 
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The Bitter decoration experiments have established the following 
points about the mixed state of the high T, superconductors for H 
parallel to t.: (i) the vortices exist as hexagonally correlated, singly 
quantized vortices with one flux quantum, h/%, per vortex as in a 
conventional type I1 superconductor (19); (ii) the vortices undergo 
pinning at twin boundaries, at crystal defects, and individually at 
other intrinsic lattice sites in ostensibly defect-free regions (20); (iii) 
in twin-free samples, instead of the long-range translational order 
expected in the crystalline state of the Abrikosov vortex lattice, the 
vortex arrangement has short-range translational order with corre- 
lation lengths on the order of a few nearest neighbor spacings, but 
long-range bond-orientational (hexatic) order that extends over ten 
to several hundred nearest neighbor spacings (21); (iv) a rather 
sharp transition with applied field is observed in BSCCO(2212) 
between isotropic disorder in the vortex arrangement for H < 20 G 
and hexatic order at higher fields; this transition occurs at consid- 
erably lower field (H - 8 G) for samples that have been annealed in 
oxygen; for both types of samples the translational and bond- 
orientational order in the hexatic arrangement increase monotoni- 
cally with field up to 100 G (22); (v) motion of individual vortices 
comparable to their separation within the 1-s decoration time 
appears to occur at 15 K in BSCC0(2212), presumably because of 
thermal motion of the vortices (23); (vi) the vortex lattice exhibits 
the expected -20% anisotropy from a perfect hexagonal structure in 

Fig. 3. Delaunay triangula- 
tions for image-processed 
scanning electron micro- 
graphs of Bitter decorated, 
oxygen-annealed BSCCO 
crystals cooled to 4.2 K in 
magnetic fields of 69, 23, and 
8 G, respectively. The fields of 
view are (A) 27 by 25 p,m2, 
(B) 48 by 45 p,m2, and (C) 72 
by 68 p,m2. Shaded triangles 
join vertices that are not six- 
fold-coordinated. 

the a-b plane in YBCO(123) due to the in-plane effective mass 
anisotropy of the electrons (24, 25) but a smaller anisotropy of -3 
to 10% rather than the nearly 50% expected in BSCCO(2212) from 
a 4  mass anisotropy (21, 22, 24); (vii) for H not parallel to t., a 
variety of novel structures have been observed, including oval 
vortices (24) and flux-line chains (26). 

The advantage of using BSCCO(2212) in the decoration exper- 
iments is that excellent quality, untwinned single crystals can be 
obtained that can be cleaved to expose a clean surface layer for 
decoration. In addition, the Ginsburg-Landau parameter K = A/( = 
200 and the a-c carrier mass anisotropy parameter r 2 55 for 
BSCCO(2212) make it a rather exotic superconductor. For com- 
parison, YBCO(123) has K = 100 and r = 5, and a conventional 
type I1 superconductor such as Nb,Sn has K = 20 and r = 1. 

A decoration collage of a BSCCO(2212) sample at H = 8 G (HIP) 
is shown in Fig. 2. In that picture one can observe nearly all of the 
points mentioned above for HIP. Individual vortices of size h/2e 
show up as white clusters of particles. They are strongly pinned 
along stripe defects in the center of the sample [possibly borders 
between domains in which the ci and 6 axes are interchanged (22)] 
and there are other obvious sample defects such as surface steps and 
tears caused by the cleaving procedure. There are dark regions of the 
sample that exhibit no apparent magnetization or vortices; and 
vortices show some tendency to align with some sample edges, but not 
all edges. The sample shows two large uniform interior regions of 
-100 by 100 vortices each that are free of obvious sample d e f m .  In 
our study of the applied field dependence of the order of the vortex 
arrangement, we have analyzed digitized images from two to three 
such regions of size -4,000 vortices for each of 20 decorated samples. 
Some studies have examined regions of as many as 15,000 vortices. 

In Fig. 3, A through C, are shown defect maps known as 
Delaunay triangulations of the arrangement of roughly 4000 vorti- 
ces from three different BSCCO samples cooled to 4 K in fields 
parallel to 2 of 69, 23, and 8 G, respectively (22). These samples 
had been previously annealed at 600°C for -24 hours in 1-am 
oxygen and then quenched to room temperature. Indications are 
that the oxygen annealing process probably does not greatly affect 
either K or r when compared to those of the as-made samples (27) 
but does reduce the concentration of oxygen vacancies (28), which 
could serve as pinning centers for vortices. In the defect maps 
shown, each vortex center is represented as a vertex of nearest 
neighbor bonds. Non-sixfold-coordinated centers, defects in a 
perfect hexagonal array, are shaded in the figure. The vortices are 
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Fig. 4. (A) The transla- 
tional correlation 
lengths 5, for annealed , 
(open) and as-made c0.75 
(closed) samples in units 
of nearest neighbor spac- 
ings. (B) The bond-ori- 
entational ponenu 11,. correlation The line ex- at 0 15. 0 

-0.  + 
B 
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q6 = 0.06 is our limit of 0 50 101 
experimental resolution. H (GI 



quite disordered at 8 G, whereas much less so at 23 G, and no 
defects in the vortex lattice are visible in the field of view at 69 G. 
The translational correlation length 5,, as determined from expo- 
nential fits to the correlation function of the translational order 
parameter of the vortex lattice qG(r) = exp(iG . r), where r is a 
vortex position, is shown versus H in Fig. 4A for both annealed and 
as-made (unannealed) samples. A monotonic increase of5, from -2 
a, at 5 G to -20 a, is observed for the annealed samples, whereas 
the as-made samples have 5, roughly half that value at each field. 

In the 69-G and 23-G defect maps (Fig. 3, A and B) one can 
easily sight down rows of vortices, despite the relatively small value 
of 5, compared to the size of the image. This is the signature of a 
hexatic, which exhibits short-range translational order and long- 
range bond-orientational order (29-3 1). The bond-orientational 
order of the vortex lattice is characterized by an order parameter 
V6(r) = exp[i60(r)]. The correlation function of this bond-orien- 
tational order parameter measures the correlation of a bond angle 
0(r) at r (modulo 2~16) with that at the origin. Assuming a power 
law dependence for the decay of correlations of the form 
(Y+,(O) . V16(r)) - r-q6, one can extract a correlation exponent, q6, 
from fits to computed bond-orientational correlation functions from 
the measured position of vortex centers (32). The exponents are 
shown fbr the same series of decorations in Fig. 4. Immediately 
obvious from the figure is the abrupt change of the fitted q6 from a 
relatively large value of 0.8, a rather steep decay of the bond- 
orientational order, to the limits of the experimental resolution, 
0.06, where it does not decay at all to within our experimental 
resolution. The change occurs rapidly in a change in the applied field 
of only a few gauss, but for difhtnt fidds for the as-made and 
annealed samples, presumably reflecting the change in the concentra- 
tion of intrinsic pinning sites in the two types of samples. This abrupt 
change in the bond-orientatiod order with H is ~ d t to reconcile 
with theories that indude only a range of pinning energies but no 
phase transition. These data are consistent with the predictions of an 
isotropic vortex fluid-hexatic vortex glass (8,9,31) or hexatic vortex 
fluid phase transition (33) or a transition between a strongly pinned 
disordered glassy phase to a less strongly pinned hexatic near H,, (34). 
Experimental data on vortex mobility versus temperature and the 
miar>scopic inwersibility temperature versus H in this field range are 
needed to dkaimhate among the various possibilities. 

Flux-Line Lattice Smctures for Other Field 
Orientations 

h r a t i o n  experiments can also be performed with the magnetic 
field applied at an angle with respect to the t axis. In the experiments 
to be discussed here, all the samples were mounted at a fixed angle 
0 with respect to the field and field-cooled with all decorations 
having been done at 4.2 K. For these orientations a variety of novel 
structures have been seen, including flux-line chains (24) and oval 
vortices (26). 

In BSCC0(2212) there have been a variety of results. The first 
measurements we will discuss were of the average density of vortices 
on the cleaved hce (I to t) of the crystal as a function of angle (26). 
For all angles up to 85" the average density was found to follow a 
(B/$,)cos 0 dependence. In other words, the vortex lattice on the 
surface is only induced by the component of the magnetic field B 
parallel to I.  This dependence had been inferred by Kes et at. (35) 
through an analysis of torque magnetometer data. 

The vortex lattice structures seen on the surface of BSCC0(2212) 
fill into two regimes, 0 < 60" and 0 > 60". For the smaller angles, 
the vortex lattice present on the surfice of the sample is isotropic, to 
within the 5 to 10% distortions discussed above. In addition, there 

is no apparent preferred orientation of the flux lattice, either with 
respect to the sample's crystallographic axis or with rlspect to the 
magnetic field's tilt axis. Interestingly enough, this measured iso- ey implies an extreme anisotropy in the-penetration depth or 
effective mass. To clarify this point, consider the case of an isotropic 
system. In the absence of surface effects, a hexagonal vortex lat- 
tice will form with the vortex lines parallel to the applied field. 
When the field is not perpendicular to the decorated surface, the 
resulting pattern seen is a distorted lattice, with a distortion factor 
p = l/cos 0. In the limit of large anisotropy r + a, however, the 
distortion of the hexagonal vortex lattice in the bulk predicted 
from the anisotropic London equations is likewise l/cos 0 (36). 
This exactly cancels the distortion in the surface pattern due to the 
tilted field, and the observed vortex lattice will then be isotropic. 
Assuming a maximum experimentally measured distortion of 5% 
at 60°, we find that a limit of T2 > 8 can be placed on the effective 
mass ratio using the full form of the London equations. Although 
this is certainly consistent with torque magnetometry (37) and 
resistivity, which give r - 60 to 200, this analysis is insensitive to 
the value of r when the anisotropy is large. 

For angles 0 > 60°, a dramatic new structure emerges (Fig. 5). An 
array of flux chains lies in the plane spanned by B and L The chains 
have an increased line density of vortices with respect to the 
background lattice. The chains also orient the intervening lattice so 
that one of the lattice vectors is parallel to the chain direction and 
perpendicular to the tilt axis. This is very different from the case for 
0 < 60" where no preferred orientation of the lattice is seen. 
Independent of the crystallographic d-axis direction, thii is the 
direction selected by London theory (36), although without having 
included or predicted the chains that are so prominent in the picture. 
This orientation was not defined before the appeat;mce of the chains. 
It has been widely reported that neutron scattering experiments are 
consistent with a lamce rotated 90" from this. Actually, this is based on 
three results, technedum (13), YBCO (IS), and UPt, (38). In all 
three cases, the field orientation corresponded to 0 = W, in which 
special case the two lamce orientations are again degenerate within the 
anisotropic London equations. The decoration results p m t e d  here 
represent the first true test of this prediction of the flux lattice 
orientation as a complete function of tilt angle. 

We can h the r  analyze the photo shown in Fig. 5. In the plane of 
the photograph, we can let the spacing between vortices along the 
chain be D and that between chains be C. Although C has large 
variations due to the chain wandering which can be seen in Fig. 5, 
both D and C are found to scale as B-I'2 at a fixed angle. Because 
this is the same scaling as the vortex lattice constant, the picture at 
a fixed angle is field-independent in the sense that the field only sets 
the overall rnagnilication, not the structure we see. For all fields and 
angles studied, we find DC a $dB. If the chain structure is 
interpreted as a superlattice modulation, this scaling is equivalent to 

tal is shown with ficldJof 
35 G applied at an angle 
of 70" from the C axis. 
The face decorated is 3 
normal to the C axis. The 
dark dots are the vortices 
with an average spacing 
of 1.4 pm. The chains ? 
run approximately per- $ 
pendicular to the rota- ti 
tion axis and d& the :' 
orientation of the vortex i :: 
lattice between chains. . '. 
(The field of view is 75 pm by 60 pm.) 
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Fig. 7. Cumnt-voltage 
curvcstbraYBCO6lm 
at an applied field of4 T 
(lT = 10'G) fortem- 
pmnus firom 80.8 to 
67.3 K at i n t d  of 
0.3 K. The temperature 
for T, at this field is 
shown as a dotted line. 
[Adapted (1111 

incorporating one extra flux quantum per superlattice unit all. A 
necklace of dislocation pairs, with zero net Burgers vector, drcsscs 
the chains to accommodate the extra flux line. These dis1ocations can 
be identified in a Delaunay trhgdation of the overall suucture. 

As the tilt angle increases toward W, the number of Abrikosov 
vortices between chains deaeases. Owing to the large ilucmations in 
C, the exact form ofthis reduction is dif7icult to state quantitatively. 
One form, consistent with the data, arises from considering distor- 
tions of an isotropic lamce. In this case, D = 0.75(+,,/B cos O)+ln. 
Experimentally, &e number of lattice constants tutween chains 
varies fiom 11 at 60" to 2 at 85'. 

Flux-line chain saucfiws were anticipated theoretically (39, 40), 
although signi6cantly diffmnt in detail-from our results: It is dear 
experimentally that the chains are formed by at least a weakening of 
the repulsive vortex-vortex interaction in the plane formed by B and 
2. -idering the enormous anisotropy, d& is presumabli related 
to the current paths, which tend to stay in the d-6 plane, indepen- 
dent of field orientarion. Calculations have centered on the e&aive 
mass approximation. Such theories suggest that, near H,,, a vortex- 
vortex attraction develops for extreme anbtropy in tilted fields. 
This is a result of the current paths remaining in the planes and the 
simple observation that two dipoles attract when their axes are both 
parallel and along the line connecting them. Extensions of these 
theories have shown that this state should consist of chains only. The 
spacing along the chains is estimated as D = (A,,&,A~)'/~ - 0.8 pm. 
Further, this is predicted to be independent of field. Our observa- 
tions contradict both of these predictions. Recently, the finite 
thickness of the sample has been included in the theory (41). The 
lowest energy state for intennediate sample thicknesses appropriate 
to this experiment was modeled with two types of vortices, chain 
vortices parallel to B and a hexagonal lame parallel to 2. Although 
the ratios of these two types ofvomces appear to be consistent with 
our results, again the calculations do not reproduce the field 
dependence of the experiments. It may be that nonlocalitics are 
playing an important role. Further simulations with the nonlocal 
expressions are now in progress to madel the results (41). 

Dolan et al. (24) were able to decorate the surface perpendicular 
to the 6 6  plane in YBCo(123). A dramatically distorted lamce 
(Fig. 6) was seen. It can be explained by assuming a mass ratio o f r2  
= 30. This mass ratio is in rough agreement with other estimates 
(42). The oval structure of the individual vortices can be similarly 
explained. The pattern in Fig. 6 is strongly idhenad by the 
presence of a twin domain boundary that aligns one chain (marked 
with an arrow). The rapid degradation of the order may be due to 
the weak shear modulus (43), reduced by a factor = 900, in this 
direction combined with a small &Ix gradient. 

We condude from the above that the mixed state of extremely 
anisotropic superconductors is important to the understanding of 
transport and noise in the high-?", superconductors, as well as other 
layered systems. Images such as those we have presented here are 
one mad to this goal. 

Vortex Dynamics 
Up until now we have been discussing static structures of the 

vortex-flux-line lamces in these materials. We will now discuss the 
dynamics. Early evidence for unconventional behavior of the vortex 
dvnamics in these materials came from measurements ofthe decav of 
&&tion in ceramic LaSrCuO (#). In those experiments; an 
irreversibilitv line was found that has been taken as evidence for 
thermally ackvated depinning of the vortex lines (45, 46). This is a 
fundamentally single-@& view ofthe dynamics. The basic idea is 
that either individual vortex lines or bundles of small numbers of 
vortex lines are thermally activated over pinning barriers, which are 
present in the sample as a result of disorder. In this picture, the 
resistivity should be thermally activated with the functional form 
"p(-U&,T), which is nonzero at all nonzero temperatures. 

A different and more controversial point of view was put forth as 
a result of subsequent high Q (high quality factor) mechanical 
oscillator nxasumneno by Gammel et al. on single crystals of 
YBCo and BSCCO (3). These expehents suggested that the 
irreversibility line actually rrfleas a vortex lama melting transition 
from a low-temperature ordered phase into a high-temperature 
vortex &id. The high temperatures, short coherence lengths, and 
L q e  Z-axis anisotropies were postulated to increase the importance 
of thermal fluctuations to allow a vortex lamce melting transition 
similar to that both predicted and found in two-dimensional films 
(5, 47). It was also suggesd (3) that a Lindemann criterion for 
vortex lamce melting (48, 49) could satisfactorily explain the 
transition temperatures found in these systems. 
The melting or phase transition picture taks the point of view that 

many-body e&cts are crucially important and must be taken into 
accauntifoneistounckrseandthestaticsand~csofdKvortex 
arrays in these systems. In this piaure them must be a low-tem- 
ordered phase with a broken symmetry, which then umhgoes a phase 
transition into a high-temperature disordacd vortex fluid phase. This 
transition is driven by thermal fhmations. As discussed previously, 
one such candidate ordered ground state with long-range orienta- 
tional order but short-range positional order has been found in recent 
low-Md decoration experkmts. 
During the ensuing controversy about the melting idea, it was 

correctly pointed out that the simple idea ofmelting fails to take into 
account the disorder in the lattice that must be prrsent as a m d t  of 
random pinning of the flux lines. However, more recently theories 
that do include pinning disorder but also find a phase transition have 
cvolved. Following the work of Shih, Ebner, and Stroud (lo), 
Fiher, Fisher, and Huse (9) postulated a vortex glass transition. In 
this picture the vortices at low temperatures are fiozm into a 
particular random configuration as determined by the details of the 
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pinning centers in the specific sample. In the vortex glass phase, the 
vortices are not free to move and so the ohmic linear resistivity is 
strictly zero. Koch et al. (1 1) found evidence for such a transition on 
YBCO films. Figure 7 is an example of their data used to argue for a 
vortex glass phase transition. Shown are current-voltage (I-V) data as 
a function of temperature at a fixed field of 4 T (1 T = lo4 G). Koch 
et at. found a crossover on cooling from ohmic to power-law to 
exponential I-V curves as predicted by the vortex glass theory. 
However, claims were made that the data could still be fit by 
conventional, thermally activated behavior (50, 51). Recent measure- 
ments by Gammel, Schneemeyer, and Bishop (12) with picovolt 
sensitivity on YBCO(123) single crystals with roughly six orders of 
magnitude greater sensitivity than the previous measurements provid- 
ed even more compelling support for the vortex glass phase transition. 

In the vortex glass model there is a true phase transition at T'+'
between vortex fluid and vortex glass phases. Associated with this 
transition there is a diverging correlation length (52) given by 
SVG - (T- Tg)-Y and a diverging correlation time T - 5%. The 
vortex glass model makes several predictions about the resistivity as 
a function of temperature, magnetic field, and current for a three- 
dimensional type I1 superconductor near this phase transition. The 
first prediction is that the linear response resistivity R should vanish 
near Tgas R - (T- Tg)+ (zP1)v. The second prediction is that the 
current scale for nonlinear response should vary as J,, - (T -
T,)'". The physical idea for this vanishing current scale for nonlin- 
ear response is as follows: the measuring current defines a length 
scale by L - (ck,~/+, J)' '~. This is the length scale below which the 
effects of current on the thermal distributions of vortices are linear. 
In order to remain in the linear response regime, we must have 
L > SVG. The response goes ~lonlinear at a current densityJsc where 
L - SVG.As T+Tgthe correlation length, tVG, diverges to infinity 
and the current scale for linear response therefore vanishes. 

The alternative point of view, that of thermally activated flux flow 
(TAFF), says that the resistance should go as R -R,exp(- U,/k,T) 
and that the current scale for linear response should be proportional 
to T. It was our reasoning that measurements at and near linear 
response at the picovolt level would provide the biggest testable 
differences between the various theories. To that end, we built a 
special squid picovoltmeter that allowed us to measure L V  curves in 
magnetic fields up to 6 T with subpicovolt sensitivity. Our measure- 
ments of the temperature dependence of both R, the linear response 
resistivity, and the onset of nonlinear response strongly constrain 
theoretical fitting parameters and have allowed us to rule out the 
class of models &a; attempt to explain the dynamics in these systems 
as due solely to thermallyactivated hopping over barriers. Figure 8 
is a log-log plot of R and the current scale for linear response J,, for 
a YBCO(123) single crystal at a field of 6 T. Both quantities vanish 
as powers of ( T  - T,) with Tg= 74.0 K. In any TAFF model, such 
behavior for the linear resistivity and the current scale for linear 
response is impossible to obtain. In a TAFF model both quantities 
are only singular at T = 0. For example, in Fig. 8 TAFF models 

Fig. 8. Linear resistivity 
R and the current scale 
for linear response J,, 
versus the reduced tem- 
perature (T - T ) on a 
log-log plot for a 
YBCO(123) single crys- 
tal at an applied field of 6 
T. The straight lines are 
the fits to the scaling the- 
ory for the vortex glass 
phase transition. 
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Fig. 9. Phase diagram 
taken from the picovolt 
measurements on a 
YBCO crystal. H,, is 
taken from estimates of 
Welp et al. (54).The sol- 
id line is a 413 power-law 
fit to the data, and the 
dashed line is a linear fit. 

would predict J,, to be an essentially horizontal straight line on the 
scales shown here. These TAFF predictions are clearlv at odds with 
the data. From measurements such as shown in Fig. 8 we can obtain 
the critical exponents for the vortex glass phase transition: we obtain 
v = 2.0 * 1and z = 4.5 * 1.5 for YBCO(123) single crystals in 
agreement with the earlier thin film data (1 1). 

Shown in Fig. 9 is a composite phase diagram for the high-field 
vortex state of single-crystal YBCO(123). The solid points are transi- 
tion temperatures Tg as extracted from superconducting quantum 
interference device (SQUID) picovoltmeter data of the kind shown in 
Fig. 8. The H,, line represents where the transition would be if one 
could neglect thermal fluctuations. The prediction of the vortex glass 
model for the phase transition is shown as the solid line. A linear Tg 
versus H shown as the dashed line fits just as well as the Hg- (T, -
T,)~'~expected as a result of strong critical fluctuations. The low-field 
behavior of the phase boundaries is both theoretically and experimen- 
tally an open question. For example, it is not now clear how the low- 
field phase boundary seen in decoration experiments (Fig. 4) should 
join the phase transition line as measured with high-field probes such 
as the picovoltmeter (Fig. 9). This is still an open question. 

At the moment, results on YBCO(123) films ( I I ) ,  YBCO(123) 
single crystals (14 ,  and single crystals of BSCCO(2212) (53) show 
convincing proof of the type shown above for the vortex glass 
model. It is worthwhile pointing out why so many workers in the 
field find "evidence" for thermal activation models and fail to see the 
vortex glass phase transition. In the best of circumstances, it is 
experimentally hard to tell the difference between a large power law 
and an exponential law for the resistivity versus temperature. In 
order to do so, one needs to be able to follow the dependence over 
a wide range. Experiments that probe the system either at too high 
a current level or in ceramic materials that cut off the diverging 
vortex glass correlation length at the grain size will never be able to see 
the transition. This does not mean that it does not exist. merelv that 
most experiments will not be able to probe it. For example, in 
BSCC0(2212), in a field of 3 T, the vortex glass critical region 
corresponds to a typical sample resistance of lop7 ohm and below. 
With typical measuring currents of 1mA and below to avoid sample 
heating, one finds that voltage sensitivities of loP"-' V and better are 
needed to probe the critical region. This is far outside the voltage 
sensitivity &most experiments. Thus, many conventional experiments 
do not have the sensitivity to probe the vortex glass transition. 
However, it is important to remember that in experimental physics the 
absence of proof should not be cof ised  with the proof of absence. 

Conclusions 
The implications of the data presented here are significant. For a 

long time it was believed that in a magnetic field the resistance of a 
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type I1superconductor only became strictly zero at T = 0. We now 
know that there exists a finite temperature phase transition at high 
fields at which the resistance becomes zero. The low-temperatire 
ordered phase is a superconducting vortex glass, which at very low 
fields has quite long-range orientational (hexatic) order. We are 
slowly m&ng real progress in our understanding of the vortex-flux 
lattice statics and dinamics. The oxide superconductors have proven 
to be a wonde~fi~l testing ground for our understanding in this area 
and have forced us to reexamine, extend, and in some cases discard 
certain theoretical models. There remain many unanswered ques- 
tions. These include the role of anisotropy, a microscopic under- 
standing of the critical currents in these systems, and the behavior of 
the lattices in the very clean limit. 
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Paleoceanography of the 

Tropical Eastern Pacific Ocean 


The East Pacific Barrier (EPB) is the most effective west and the existence of oceanic atolls (now drowned 
marine barrier to dispersal of tropical shallow-water guyots) in the eastern Pacific probably aided dispersal. 
fauna in the world today. The fossil record of corals in the Similarly, in the middle and early Mesozoic and late 
eastern Pacific suggests this has been true throughout the Paleozoic, terranes in the central tropical Pacific likely 
Cenozoic. In the Cretaceous, the EPB was apparently less served as stepping stones to dispersal of tropical shelf 
effective in limiting dispersal. Equatorial circulation in faunas, reducing the isolating effect of an otherwise wider 
the Pacific then appears to have been primarily east to Pacific Ocean (Panthalassa). 

THE TROPICAL E A ~ R N  PACIFICOCEANHAS BEEN DESCRIBED (IWP) zoogeographic province from the eastern Pacific province (Fig. 
as the most effective barrier to dispersal of wm-water shelf 1).Charles Darwin described it as a11 "impassable barrier" for the 
fauna in the world (1).Ekman named this body of water the East migration of coastal marine species (2).In terms of coral reef habitats, the 

Pacific Barrier (EPB) and defined it as that expanse of ocean where no EPB exists between the Line Islands in the western Pacific and the 
islands exist in the tropical Pacific separating the Indo-West Pacific western coast of the Americas and several offshore islands in the eastern 
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