
Morphology and Local Structure in Labyrinthine 
Stripe Domain Phase 

Analysis ofglobally disordmd, n o n e u m  %byriuthincn stripe-domain patterns 
i n t h i n ~ c g a r m t f i l m s h a s ~ d a w c l l ~ d l o c a l s t i a a u r r ~ ~ ~ ~ ~  
an oblong p o l ~ d  plaqume as the fundamental motif. Two types ofoflabyrinths we& 
h d :  one having topological defects, the otha composed of a siagle, unbranched, 
meandering line. These pattems emerge when the labyrinthine state is approached 
either by heating at constant magnetic &Id or by dem- from saturation at 
constant temperitwe. S i  and as&ct ratios ofthe oblong polyg6nal pl;lqumes prove 
to bc independent of the choice of these two mutually orthogonal trajectories within 
the phase-diagram, which is surp&hg in view o f  the &t mechanisms and 
concomitant topological amstmints gonrfiag the evolution of disordet. The signifi- 
cance of this unique local structure is dmwd  in the general context of defect- 
mediated melting of two-dimensional stripe phases. 

u NIDIRECTIONALLY MODULATED 

("lamellar") states occur in a wide 
variety of circumstances in con- 

densed matter physics. In three dimen- 
sions, pertinent examples include the smec- 
tic phases of liquid crystals (1) and the 
analogous lamellar phases of surfactants 
and diblock copolymers (2). In two dimen- 
sions, "stripe" phases (3) are favored in 
systems with competing interactions, in- 
cluding thin uniaxial ferrimagnetic garnet 
films (4), layers of ferromagnetic colloids 
("femfluids") (S), and amphiphilic 
("Langmuir") monolayers confined to an 
air-water interface (6). Likewise, these 
phases are seen in monolayers of rare gas 
atomic and simple molecular adsorbates on 
crystahe substrates exhibiting transitions 
between commensurate and Gcommensu- 
rate phases (7) -and in certain layered ma- 
terials undergoing a charge density wave 
distortion (8). Even dissipative systems 
may display analogous structures, as in the 
case of the convective rolls arising from the 
Rayleigh-Btnard instability (9). 

In all of these instances, the one-dimen- 
sional ordering is defined in terms of a 
modulation wave vector, q*. The corre- 
sponding length scale, d = 2?r/lq*l, is given 
in terms of characteristic molecular dimen- 
sions as in the case of liquid uystals and 
block copolymers, set by the balance of 
competing interactions (4) or determined 
by competing intrinsic periodicities (3); d 

T o  whom comspondaKc should k addrrsscd. 

may vary from tens of angstroms to milli- 
meters (10). In general, q* depends on 
temperature and chemical potential or an 
equivalent external field, and as these ex- 
perimental variables are tuned, lamellar or- 
der eventually gives way to globally disor- 
dered states: in fact, "labyrinthine" 
patterns of the type of interest here have 
long been known in several of the systems 
mentioned above (4, 5, 10, 1 1, 12). 

We present d t s  of an examination of 
the morphology and local structure of such 
labyrinthine stripe patterns. This ex- 
amination was performed by application of 
extensive digital line-pattern analysis to 
images recorded via polarization micros- 
copy b m  ferrimagnetic garnet 6lms. The 
composition of the 6lms was (YGdTm), 
(FeGa),O,,, and they were grown epitax- 
iaUy on gadolinium gallium garnet (GGG) 
substrates of (111) orientation to a thick- 
ness of approximately 13 w. The direct- 
space analysis reveals the existence of a 
well-defined motif defining the local struc- 
ture of these nonequilibrium states. That 
is, although the labyrinthine patterns gen- 
erally do not represent the state of glob- 
ally minimal free energy, they nevertheless 
exhibit a morphology that is character- 
istic of the final disordered state: the mor- 
phology is formed regardless of the choice 
of the specific trajectory in the magnetic 
field-temperature (H, 7')-phase plane along 
which this state is approached. Labyrin- 
thine patterns may thus be regarded as 
emerging from the minimization of a free- 
energy functional in the presence of well- 
defined constraints, imposed by the to- 

pology of the evolving pattern of nonintcr- 
secting lines. 

To demonstrate the existence of this 
uniquely defined local structure of globally 
disordered smpe phases, we have examined 
the labyrinthine patterns generated fiom 
the initial states depicted in Fig. 1. These 
initial configurations represent distinct 
prototypes: one (Fig. 1A) is a well-ordered 
lamellar phase that is, in fact, the state of 
globally minimal frec energy along the 
zero-field axis of the (H,7')-phase diagram 
(4); the other (Fig. 1B) is one of many 
possible configurations of a meandering 
smpe, emerging fiom a single site discem- 
ible in the figure. 

The evolution of a labyrinthine pattern 
fiom the perfectly ordered lamellar phase of 
Fig. lA, obtained fiom the parmagnetic 
phase by cooling in zero (perpendicular) 
magnetic field (13), involves a sequence of 
transverse instabiities similar to those dis- 
played by smectic liquid crystals under elas- 
tic stress (1, 14, IS), and ends with the 

Tern perature 

Fig. 1. Distinu typcs of magmtic stripe domain 
pattems nmded visible by Faraday &st and 
polarization miamcopy. (A) Lamellar phase at T - 80°C (-0.76Tc) and H = 0 Oe, generated by 
cooling at H = 0 Oe from the paramagnetic phase 
in the presence ofa weak (- 1/2 0 Oe) intraplanar 
field. The scale bar marks 200 pm; the character- 
istic snipe-stripe spacing, D*, is 35.5 pm. (B) 
Meandering s@e stripe at T a 160°C 
(-0.93Tc) and H a 70 Oe, generated by demag- 
netizing at constant temperature fiom a state of 
complete magmization. (C) Sketch of mean field 
(H,T)-phase diagram for the dipolar I s i i  b 
magnet exhibiting unidirectional "smpc" and m- 
angular "bubble" phases (4). Horizontal and ver- 
tical arrows indicate the trajectories followed to 
obtain the labyrinth patterns of Fig. 2. 
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fbrmation and subsequent unbinding ofdis- 
dination dipoles (1 1, 15). A detailed analysis 
of these instabilities will be presented else- 
where (13); the final labyrinthine pattern is 
of interest here. 

Figure 2 shows the output of an algo- 
rithm designed to evaluate the medial axis 
transform ("skeleton") (16) of the "bright" 
component of a given pattern and to iden- 
tify its topological defects (1 7) : it is apparent 
that the pattern in Fig. 2A contains a ran- 
dom set of disdidation charges of opposite 
sign (18, 19). As we show elsewhere, this 
configuration represents the result of an 
unbinding transition of initially paired dis- 
dination charges which m a i n  topological- 
ly connected but move to otherwise uncor- 
related positions (13). Stating with the 
meandering line in Fig. lB, obtained by 
demagnetization h m  saturation at a tem- 
perature of 160°C (=0.93Tc; critical T, T, 
= 192"C), fbther reduction of the applied 
magnetic field to zero at this (constant) 
temperature produces the labyrinth, whose 
medial axis transfbrm is depicted in Fig. 2B. 
In contrast to the previous case, topological 

Flg. 2. Medial vial transform ("skeletonn) ofthe 
"bright" component in labyrinth patterns of 
"branchedn (A) and "bended" (6) types, generat- 
ed, rcspeckly, from the lamellar initial con6g- 
uration of Fig. 1A by heating to -160°C 
(-0.93Tc) at H = 0 Oe and from the meandering 
stripe coniiguration of Fig. 1B by demagm&hg 
to H = 0 Oc at -160"C,.yielding zero net 
magnethtion. (A) Didnatlon dekcts in the 
pattern of + 112 (endpoints, 0) and - 1/2 (branch 
points, A) charges impart the topology of a 
b i  tree on this branched con6gmtion (13). 
(B) The minority component of the banded lab- 
yrinth contains no topological dekcts. The width 
of the field measures 570 pm. 

defects are absent, on a scale of millimeters, 
h m  the pattern of the o~ginal "minority" 
(or "invading") phase, shown "bright" in 
Fig. 1B. 

We may thus distinguish two types of 
labyrinths on the basis of topological point 
defects: we find in the first case a dismbu- 
tion of defkcts that is symmetric with respect 
to exchanging pattern components (see also 
Fig. 3A), while in the second case this 
symmetry is broken, leading to a completely 
asymmetric distribution: all defects are 
fo-und in the "majority" component, shown 
"dark" in Fig. 1B. The first dass of laby- 
rinths containing disdinations in both com- 
ponents assumes the topology of a binary 
tree: it % referred to as "branchedn below. 
The second dm, here termed "banded," 
features a distinct component free of defects. 
Remarkably, the total density of disdina- 
tions is similar for both classes of patterns. 

Azimuthally averaged Pamrson or pair 
codation functions were calculated for 
both types of labyrinths and for the lamellar 
ground state, all at H = 0 Oe and T = 
160°C (Fig. 4). Two features are notewor- 
thy. Fit, all three patterns are characterized 
by the same modulation wavenumber, that 
is, a specific value of q* = q*(H, 7'): in tact, 
the realization of this uniquely determined 
value governs the pattern evolution tiom the 
initial state. Second, correlations in the lab- 
yrinth patterns in Fig. 4, A and C, vanish 
over a characteristic decay length of approx- 
imately 6 to 8 modulation periods, so smpe- 
stripe -positional comlations are limited- to 
that range. 

Direct-space analysis of the labyrinth pat- 
terns accounts fbr the decay of the coccela- 
tion functions in Fig. 4 by revealing the 
existence of a fundamental motif common to 
both types of labyrinths, namely, an oblong 
polygonal duster of parallel line segments 
(1% 20). Application of low-pass and dila- 
tion filters (20) to the original pattern ren- 
ders visible such segment d&, promi- 
nent in the representation of the "branched" 
labyrinth in Fig. 31% Line-pattern analysis 
yields a quantitative decomposition of the 
pattern into a set of dusters (Fig. 3B). To 
perform the analysis (20), one first processes 
a given pattern to approximate its medial 
axis transform by a set of linear segments, 
adjusting segment lengths in the fit (21,22). 
A histogram of the size distribution of linear 
segments so obtained (Fig. 5A) reveals the 
presence of a prdkred segment length, e,, 
identical for both patterns, which may be 
regarded as the equivalent of a "persistence" 
length (23). The resulting set of linear seg- 
ments is next subjected to a statistical anal- 
ysis in which pairs ofsegments are compared 
with respect to three geometrical quantities 
measuring parallelism, mutual overlap, and 

adjacency (17, 20) and are sorted into 
p u p s ,  or segment dusters, according to a 
set of preselected threshold parameters. Fi- 
nally, the convex hull of kch  duster is 
constructed tiom the polygon defined by the 
ordered sequence of its segment endpoints 
(Fig. 3B) (24). 

The segment dusters so generated are 
seen to yield a faiithful representation of the 
local pattern structure. The equivalent of a 
nematic director (I), marki@ the average 
normal direction of segments in a p u p ,  
may be assigned to each duster (Fig. 3B). 
The corresponding order parameter, S i 
<2 ax2 4 - 1>, 0 5 S s 1, provides an 
average measure of alignment of individual 
&IS in a p r e f d  direction, with 4 
denoting the angular misorientation for a 
given director (1). Typical S values between 
0.1 and 0.2 for the type of pattem analyzed 
here indicate the absence of a globally pre- 
k m d  direction, thereby implying complete 
azimuthal averaging of director orienta- 
tions. 

Statistical analysis of the longitudinal size, 

Flg. 3. Direct-space line-pattern analysis of 
branched labyrinth pattern. (A) Filtered version 
of the original pattern analyzed in Fig. 2A, pro- 
cesstd to highlight oblong polygonal segment 
dusters. Topological defects in both bright and 
dark components ofthis "branchedn labyrinth am 
identified as end points (0, 0) and branch points 
(A, A) of the pattern. (6) Each solid polygonal 
boundary repmsents the convex hull of a group of 
segments, computed from the segment endpoints 
(0). The lim segment attached to each hull center 
marks the average normal of the segments 
grouped into the duster and may be considered 
the equivalent of a nematic dirrcta. As discussed 
in the text, the pattern is globally isoaopic: S = 
0.2. The width of the field is 570 p.m. 
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L = (n - l)d, of segment clusters confirms 
that the correlation functions for both laby- 
rinths given in Fig. 4, A and C, are in fact 
finite-size limited: the peak of the distribution 
of L for banded and branched labyrinths (Fig. 
5C) coincides with the characteristic decay 
length of correlations. That is, longitudinal 
positional correlations, while expected to de- 
cay exponentially in two-dimensional (2-D) 
stripe phases (19), are here limited by the 
finite cluster size; effective elastic constants for 
smpe compression and bending, evaluated 
from "smectic" pattern instabilities (13), place 
typical positional correlation lengths in the 
range of 10 mm (13, 15, 19), a range far 
exceeding the typical peak values of L and 
reflecting the substantial effective s&ess of 
magnetic stripe phases (15). 

The oblong clusters of Fig. 3 are reminis- 
cent of those envisaged in the context of 
defect-mediated melting of a 2-D smectic 
phase in which the characteristic area and 
aspect ratio, e = L/W, of a cluster are set by 
the density, nD, of unpaired (free) disloca- 
tions. Specifically, scaling relations A = tD2, 
L = 5D4f3, and W = tDzp are predicted, 
respectively, for area, length, and width of 
the clusters, where 5, = nD-'I2 (19). The 
analysis of many labyrinth patterns (20) does 
indeed reveal that, in accordance with the 

0 
Radial distance (d-93 

Fig. 4. Azimuthally averaged Patterson (pair cor- 
relation) functions, computed from (A) a 
branched labyrinth (see Fig. 2A), (B) a lamellar 
reference pattern, and (C) a banded labyrinth (see 
Fig. 2B) by successive 26 Fourier transformations 
and subsequent angular integration. All patterns 
were recorded at T = 160°C and H = 0 Oe; the 
modulation pericd, d, is 11 pm. 

cited scaling predictions, statistical fluctua- 
tions of cluster dimensions are correlated 
and may be described by L = w2 for the 
range of typical cluster sizes encountered in 
our patterns. In fact, the inspection of 
"branched" labyrinths such as the one in 
Fig. 3A leads us to suggest that the density 
ofhisclinations plays a-role analogous to nd. 
That is, the geometrical dimensions of seg- 
ment clusters are determined by the creation 
of disclinations at a characteristic densitv. 

Thus, our picture of the formation of 
nonequilibrium labyrinth phases involves 
ideas germane to those advanced in the 
context of defect-mediated melting. While 
leading to exponentially decaying positional 
correlations, a finite density of free disloca- 
tions would leave orientational correlations 
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Fig. 5. Statistical analysis of oblong clusters in the 
"branched" (*) and "bandedn ( 0 )  labyrinth pat- 
terns of Fig. 2. (A) Dismbution of segment 
lengths (100 pixels = 111 p n )  obtained when 
approximating the labyrinth patterns by a set of 
linear segments [for details, see (20)l: we identify 
the mean with a "persistence" length ( -34  essen- 
tially identical for both types of patterns (total 
number of segments: *, 700; 0,722). (B) Shape 
of the dismbution of maximal duster widths, W 
(100 pixels = 11 1 pm), reflects the existence of 
such a persistence length (total number of clus- 
ters: *, 58; 0 ,53) .  (C) The dismbution of longi- 
tudinal cluster sizes, L, is given in units of the 
stripe-stripe spacing, d = 21~/q* (-11 pm); the 
peaks in the two dismbutions which are close [for 
more detail, see (20)], each rCptCSen~g the finite 
s ix  cutoff which governs the decay of the corre- 
sponding positional correlation function in Fig. 4. 

intact; as a result, clusters would in that 
situation be expected to form a 2-D nematic 
phase characterized by a preferred direction 
of alignment of segment and algebraically 
decaying orientational correlations (19). In 
contrast, the segment clusters in our nonequi- 
librium labyrinthine patterns exhibit an iso- 
tropic dismbution oforientations as we have 
stated in connection with Fig. 3. Topological 
consmints are seen to play a dominant role, 
generally preventing access to the state of 
globally minimal free energy. These con- 
s t ra in~ may be relaxed by breaking and re- 
connecting lines, thereby enabhng the local 
reorientation of segment clusters. Such fluc- 
tuations, while not observed in the magnetic 
films investigated here, do occur in certain 
Langmuir films currently under study. 
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