
and thus they may present a novel strategy 
to target double-stranded DNA to achieve 
gene modulation and to construct artificial 
restriction enzymes. Strand displacement 
may be a general principle yet to be demon
strated for other oligonucleotide analogs 
with a neutral backbone, and such complex
es may serve as valuable models in studies of 
the DNA structure of transcription com
plexes in which strand displacement by the 
nascent RNA chain is a central process. The 
strand displacement complexes would also 
be analogous to three-strand DNA complex
es that can be induced by the DNA recom
bination protein RecA. 
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coupling membrane-bound recep
tors to intracellular effectors. G pro

teins are heterotrimers and are believed to 
dissociate to liberate a nucleotide-bound a 
subunit and a complex of p and 7 subunits 
when the proteins are activated by the bind
ing of GTT (1). Functional characterization 
provided the first basis for classification of G 
proteins: Gs is the G protein that activates 
adenylyl cyclase, and G t (transducin) is the 
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retinal G protein that activates a guanosine 
3' ,5' -monophosphate-specific phosphodi
esterase. In each of these cases, the dissociated 
GTP-a subunit complex activates the effector 
enzyme (cyclase or phosphodiesterase). Thus, 
the concept arose that each G protein oligo
mer contains a functionally specific a subunit 
in association with mixtures of a small num
ber of different 0 and 7 subunits. Nearly 20 
distinct a subunits have now been described, 
as well as four p subunits and a similar 
number of 7 polypeptides (2). 

Although interest has centered on the idea 
that a subunits are the elements that provide 
specificity in G protein-mediated signal 
transduction systems, it was suggested that 

Type-Specific Regulation of Adenylyl Cyclase by 
G Protein $y Subunits 
WEI-JEN TANG AND ALFRED G. GILMAN* 

Heterotrimeric guanine nucleotide—binding regulatory proteins (G proteins) dissociate 
into guanosine triphosphate (GTP)-bound a subunits and a complex of 0 and y subunits 
after interaction with receptors. The GTP-c* subunit complex activates appropriate 
effectors, such as adenylyl cyclase, retinal phosphodiesterase, phospholipase C, and ion 
channels. G protein $y subunits have been found to have regulatory effects on certain 
types of adenylyl cyclase. In the presence of GStt, the a subunit of the G protein that 
activates adenylyl cyclase, one form of adenylyl cyclase was inhibited by 0-y, some forms 
were activated by p7, and some forms were not affected by $y. These interactions suggest 
mechanisms for communication between distinct signal-transducing pathways. 
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subunit dissociation provided an opportunity 
for a branch point in signaling pathways (3). 
Thus, it was hypothesized that inhibition of 
adenylyl cyclase by Gi proteins was mediated 
by py subunits, albeit indirectly by means of 
their capacity to interact with and deactivate 
the a subunit of G, (G,,). This suggestion 
and others about the role of the py subunit 
complex in signal transduction have generat- 
ed controversy. For example, some investiga- 
tors have argued that py activates myocardial 
K+ channels ( 4 ) ,  whereas others have pro- 
posed that a subunits provide this function 

Fig. 1. Effects of GTP-y-S-rG,,., and bovine 
brain py on type-I (A) and type-I1 (B) adenylyl 
cyclase activity in membranes from Sf 9 cells 
infected with B-rACI or B-rACII. (C) Compari- 
son of the effect of GTP-y-S-rG,,., (left) and 
bovine brain py in the presence of 100 nM 
GTP-y-S-rG,,., (right) on type-I and type-I1 
adenylyl cyclase. The rG,,., was activated with 
100 pM GTP-y-S for 30 min at 30°C in 50 mM 
sodium Hepes (pH 8.0), 1 mM EDTA, 1 mM 
dithiothreitol, and 5 mM MgSO,. Free GTP-y-S 
was removed by gel filtration. The concentration 
of rG,,., was determined by GTP-y-S binding, 
and the concentration of py was determined by 
staining with amido black. GTP-y-S-rG,,., was 
incubated with 5 pg of Sf 9 cell membranes for 10 
min at 30°C before the assay. py was added 
immediately before the assay. Solutions of py 
contained lubrol PX, and the concentration of 
detergent in the assay was held fixed at 0.025%. 
The duration of the adenylyl cyclase assay was 10 
min at 30°C in the presence of 10 mM MgCI,, as 
described (24). Data shown are a representative 
experiment of more than 20 similar experiments. 

(5) .  Genetic evidence implicates py as the 
primary mediator of the response to mating 
factors in budding yeast (6). Disruption of 
the gene that encodes the G protein a subunit 
in this pathway causes constitutive signaling, 
presumably as a result of the uncontrolled 
activity of py. Disruption of P or y eliminates 
the response. Unfortunately, the subsequent 
effector in this pathway is unknown, and 
there is no biochemical evidence to support 
these mechanistic interpretations. 

Calmodulin-activated (type-I) adenylyl cy- 
clase can be inhibited by G protein py sub- 
units. py was hypothesized to interact with 
calmodulin and sequester the activator (7). 
We have cloned ( 8 )  and expressed (9) a 
cDNA that encodes type-I adenylyl cyclase 
and shown that this mechanism is incorrect. 
However, py does inhibit type-I adenylyl 
cyclase activity when the enzyme is assayed 
after expression in Sf 9 cells infected with 
recombinant baculovirus. I t  seems likely that 
this inhibitory effect of py is exerted directly. 
The cDNAs for additional forms of adenylyl 
cyclase have been cloned, and we have exam- 
ined the generality of this response. The effect 
of py depends on the type of adenylyl cyclase 
under study. 

Type-I and type-11 adenylyl cyclases are 
structural homologs. Both are expressed pre- 
dominantly in the central nervous system, 
although the type-II protein is found in some 
peripheral tissues as well (10). Type-I ade- 
nylyl cyclase can be stimulated by calmodulin; 

I 
25 50 75 100 
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Fig. 2. Effects of GDP-G, on adenylyl cyclase 
activity in the presence of GTP-y-S-rG,, and py. 
(A) Type-I adenylyl cyclase; (B) type41 adenylyl 
cyclase. py (100 nM) was incubated on ice for 10 
nun with G, in 10 pM GDP. GTP-y-S-rG,,., 
(100 nM) was incubated with 5 pg of Sf9 cell 
membranes at 30°C for 10 min before the addition 
of py or py and G,. The concentration of bovine 
brain G, was determined by GTP-y-S binding. 
Data shown are representative of two experiments. 

Fig. 3. The effect of various concentrations of 
rabbit liver G,, and py on type-I and type-I1 
adenylyl cyclase activity. Liver G, was purified as 
described (25). G,, was then separated from py 
by fractionation on immobilized py agarose (26). 
G,, was eluted from the immobilized py column 
with 10 pM GTP-y-S. Unbound GTP-y-S was 
removed by gel filtration. Assays were performed 
in the presence of 0.05% lubrol PX. Data shown 
are representative of two experiments. 

type-11 cannot. Both of these proteins were 
expressed in insect ovarian Sf 9 cells infected 
with recombinant baculoviruses (B-rACI and 
B-rACII) to approximately the same specific 
activity (1 1). More than 95% of the adenylyl 
cyclase activity in these membranes was con- 
tributed by the recombinant enzyme. The 
activities of both forms of adenylyl cyclase 
were stimulated to approximately the same 
extent by recombinant (Escherichia coli-de- 
rived) G,, (GTP-y-S-a,,) activated with 
panosine-5'-0-(3-thiotriphosphate) (GTP- 
y-S) (Fig. 1, A and B). Bovine brain py itself 
had essentially no effect on adenylyl cyclase 
activity. However, as described (9), py inhib- 
ited type-I adenylyl cyclase activity by approx- 
imately 60% in the presence of GTP-y-S- 
rG,, (Fig. 1A). (GTP-y-S binds to G,, with 
high affinity and under these conditions py 
c a k o t  reassociate with G,,.) Under identical 
conditions, py stimulated type-11 adenylyl 
cyclase activity in the presence of activated 
G,, (Fig. 1B). The capacity of py to activate 
type-11 adenylyl cyclase was exerted rapidly 
(with a lag time of less than 1 min) (12). The 
concentration of py required for this stimu- 
latory effect [median effective concentration 
(EC,,) -5 to 10 nM] was similar to that 
required for inhibition of the type-I enzyme. 
Thus, after exposure of the two adenylyl 
cyclases to both activated G,, and py, their 
activities differed by approximately 20-fold 
(Fig. 1C). 

To confirm that both the inhibitory and 
the stimulatory modulation of adenylyl cy- 
clase activity was due to py, we tested the 
capacity of .guanosine &phosphate (GDP)- 
bound bovine brain G, to reverse the effects 
of endogenous or exogenous py subunits 
(Fig. 2). As anticipated, Go, slightly in- 
creased or decreased type-I or type-II adenylyl 
cyclase activity, respectively, in the absence of 
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Table 1. Capacity of G protein a subunits to 
support activation of type-II adenylyl cyclase by py. 
G protein a subunits were activated with GTP-y-S. 
Adenylyl cydase activity was assayed in membranes 
fiom Sf 9 cells infected with B-rACII. Data shown 
are representative of two experiments. rG,., (IT), 
a,., (LR268,269FT); rG,,., (CR) ,  rG,., 
(WLR263,268,269CIT). 

Adenylyl cyclase activity 

Subunit (nmol min-' mg-') 

(100 nM) Without With By 

None 0.2 0.2 
rGs,.s 3.6 25 
rGS,-l 2.6 26 
rGS,-, (FT) 0.6 2.6 
~Gs,., P E T )  0.3 0.7 
'Gia 0.3 0.4 

exogenous py. G, increased or decreased 
type-I or type-11 adenylyl cydase activity, re- 
spectively, when 100 & p i  was present (13) 
(Fig. 2). Twelve different batches of py were 
tested, includmg preparations from brain and 
retina and some preparations. that were en- 
riched for the P3, or the P3, isoform of the P 
subunit (14). All influenced adenylyl cyclase 
activity as anticipated, except for retinal py, 
which has a slngle isoform of both P and y. 
Aside fiom this observation, the relative effica- 
cies of different p and y subunits are unknown. 
Heat-inactivated py had no effect. 

Although G,, synthesized in E. coli appears 
normal in most of its properties, it has a 
reduced f i t y  for adenylyl cyclase (15). Thus, 
the concentrations of rG, and py required for 
the results shown in Fig. 1 are approximately 
equal. Mammalian G, activates adenylyl cy- 
clase at lower concentrations than does the E. 
coli-derived recombinant protein. To demon- 
strate this fact and to rule out the possibility 
that the effem of py were somehow dependent 
on the use of rG,,, we repeated the experi- 
ments with G,, purified from rabbit liver. The 
inhibitory and stimulatory effxts of py on 

type-I and type-II adenylyl cyclase, respectively, 
were also observed in the presence of rabbit 
liver G, (Fig. 3). However, G,, from rabbit 
liver activated adenylyl cydase in the 0.1 to 1 
n M  range, whereas effects of py required con- 
centrations in the 1 to 20 nM range. 

We tested the capacity of other G protein a 
subunits to support activation of type-II ade- 
nylyl cydase by py (Table 1). Two different 
splice variants of rG, [a short form (I€,,.,) 
and a long form (I€,.,)] were equally effective. 
Mutants of rG,, with impaired ability to acti- 
vate adenylyl cyclase have been defined that 
appear to have a reduced affinity for the en- 
zyme (16). The activities of rG,, mutants 
LR268,269FT and WLR263,268,269CFT 
were approximately 8% and 1% of that of G,,, 
respectively (Table 1) (16). These mutant pro- 
teins were similarly ineffective when tested in 
combination with py. The a subunit of rGi 
(rG,) had no effect on type-11 adenylyl cyclase 
activity in the absence or presence of py. The 
py subunit complex activated adenylyl cyclase 
only weakly in the presence of forskolin (12). 

The structures of mammalian membrane- 
bound adenylyl cyclases are complex, although 
there is a rough symmetty between the NH2 
and COOH halves of the molecules. Each half 
of these molecules is thought to contain six 
putative transmembrane helices and a large 
(-40 kD) cytosolic domain. The two cytosolic 
domains show 55% sequence homology with 
each other. Each is similar to the catalvtic 
domain of guanylyl cyclase, and each may 
contain a nucleotide-binding site. No enzymat- 
ic activity is apparent when each half of type-I 
adenylyl cyclase (designated. I-NMICl and 
I-M2C2) is expressed separately (Table 2) (9). 
However, an active enzyme is formed when the 
two halves of the molckule are expressed con- 
currently. This provided us the opportunity to 
assemble noncovalent chimeras (1 7).  As expect- 
ed, the chimera formed from I-NM-~C, and 
I-M2C2 was inhibited by py after activation 
with G,,. Less activity was detected when 
11-NMICl and 11-M2C2 were coexpressed, but 

Table 2. Effect of GTP-y-S-rG,, and Py on truncated forms of adenylyl cyclase. Sf 9 cells were 
infected with the viruses indicated, and membranes were prepared as described (9 ) .  Assays were 
performed without activators or with 100 pM forskolin, 80 nM GTP-y-S-rG,,.,, or 80 nM GTP-y- 
S-rG,,., and 300 nM Py. Data shown are representative of three experiments. 

Virus 

- - 

Adenylyl cyclase activity (nmol min-' mg-') 

No For- GTP-7-S- GTP-y -S- 
activator skolin 1% 1% + Pr 

Fig. 4. Effects of GTP-y-SrG,, forskolin, and 
bovine brain Py on type-III adenylyl cyclase (mem- 
branes from Sf 9 cells infected with B-rAClII) (A) 
and adenvlvl cvclase in cvc- S49 cell membranes 18). 

\ 8 

Sf 9 cell kmbranes (12 pg) or cyc- S49 cell mem- 
branes (60 pg) were incubated with GTP-y-SrG, 
(circles) or GTP-y-SrG, plus 10 pM forskolin 
(mangles) for 10 min at 30°C. Py (100 nM) (filled 
symbols) was added immediately before the assay. 
The duration of the adenylyl cyclase assay was 10 min 
for Sf 9 cell membranes and 20 min for cyc- mem- 
branes. Data are representative of two experiments. 

py potentiated the activation by G,. I-NM,C, 
and 11-M2C2 formed an active enzyme, and 
addition of py to this complex resulted in 
activation in the presence of G,%. Thus, we 
tentatively assign the site for activation of ade- 
nylyl cyclase by py (whether the effect is direct 
or indirect) to the COOH half of the molecule. 
Unfortunately, the combination of 11-NM,C, 
and I-M2C2 was inactive. 

We do not as yet know the mechanism of the 
inhibitory and stimulatory effe& of py because 
the assays have been performed with adenylyl 
cyclase in Sf9 cell membranes. Inhibition of 
type-I adenylyl cyclase and stimulation of the 
type-11 enzyme by py was observed after solu- 
bilization of the enzymes with detergents and 
activation with GTP-y -SrG,, (1 8). We were 
unable to observe the inhibitory effect of py on 
the type-I enzynie after its purification by for- 
skolin-Sepharose chromatography. However, 
only small quantities of purified protein were 
obtained, and manipulations were technically 
difKcult. Purification of type-11 adenylyl cyclase 
on forskolin-Sepharose is not efficient; only a 
tenfold increase in specific activity was ob- -- 

0.02 
tained. However, thisireparation retained the 

I-NMICl 0.1 0.04 
I-M2C2 0.04 0.1 0.08 : capacity to be stimulated by py in the presence 
II-NM,C, 0.04 0.1 0.07 0.07 of activated G,,. Solubilization and purification 
11-M2C2 0.04 0.1 0.1 0.07 of type-11 adenylyl cyclase removed immuno- 
I-NMICl + I-M2C2 0.5 3.1 2.8 I.4 reactive, but catalytlcdy inactive, protein from 
I-NMICl + 11-M2C2 0.05 3.6 2.1 
11-NMICl + I-M2C2 0.04 0.13 0.11 

4.0 the preparation. Thus, renaturation of such 0.11 
II-NMIC, + 11-M2C2 0.02 0.13 0.18 0.6 material is not the basis for the stirnulatory 

effect of py. 
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Full-length cDNAs for two additional mam- 
malian ad;nylyl cyclases have been described 
(19, 20). The type-III enzyme is abundant in 
olfactory tissue. We expressed this adenylyl 
cyclase in Sf9 cells (17); activity is stimulated 
synergistically by G, and forskolin (Fig. 4A). 
There was little or no effect of bovine brain py 
on type-111 adenylyl cyclase activity in the pres- 
ence of G,, forskolin, or a combination of the 
two activators (Fig. 4A). The type-IV enzyme 
is found in brain i d  several peripheral tissues. 
Its sequence most resembles that of type 11, and 
its activity can be stimulated by a combination 
of Gs, a d  py in much the same manner as 
type-11 adenylyl cyclase can be (20). S49 cells 
express two other adenylyl cyclases, designated 
V and VI (21). Much of the initial work on the 
effects of G protein a and py subunits on 
adenylyl cyclase activity was performed with 
S49 cell membranes (1, 22). In keeping with 
other results, we observed only weak potentia- 
tion of cyc- (G,-deficient) S49 cell adenylyl 
cyclase activity by py in the presence of G, 
(Fig. 4B). Thus, it may be possible to classify 
adehylyl cyclases as being potentiated or inhib- 
ited by py or as relatively immune to the 
subunits. It will be of interest to see if any 
non-calrnodulin-sensitive form of the enzyme 
can be inhibited by py. 

The major question is the physiologcal sig- 
nificance of these phenomena. An obvious pre- 
diction is that agents that interact with recep- 
tors that are coupled to G proteins other than 
G, might alter the effects of G,-linked receptors 
on adenosine 3',5'-monophosphate (CAMP) 
accumulation (by releasing py) while having 
no primary effect on adenylyl cyclase them- 
selves. Go in particular could serve as a large 
pool of py be&use this G protein represents 1 
to 2% of brain membrane protein. Such a 
mechanism might explain the effects of combi- 
nations of neur~tr&mitters on CAME' concen- 
trations in brain slices (23). Agents such as 
glutamate and a-adrenergic agonists, which do 
not stimulate adenylyl cyclase by themselves, 
potentiate the actions -of compounds such as 
histamine, P-adrenergic agonists, and adeno- 
sine, which can interact with Gs-linked recep- 
tors. It will be of interest to discover ifeffects of 
this sort can be ascribed to regulation of the 
concentration of the free py subunit complex. 
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A Requirement for the Intercellular Messenger Nitric 
Oxide in Long-Term. Potentiation 

Long-term potentiation (LTP) of synaptic transmission is a widely studied model of 
neuronal plasticity. The induction of LTP is known to require processes in the 
postsynaptic neuron, while experimental evidence suggests that the expression of LTP 
may occur $ the presynaptic terminal. This has led to speculation that a retrograde 
messenger travels from the post- to the presynaptic cell during induction of LTP. 
Extracellular application or postsynaptic injection of two inhibitors of nitric oxide 
synthase, N-nitro-L-arginine or p-methyl-L-arginine, blocks LTP. Extracellular 
application of hemoglobin, which binds nitric oxide, also attenuates LTP. These 
findings suggest that nitric oxide liberated from postsynaptic neurons may travel back 
to presynaptic terminals to cause LTP expression. 

I N THE SCHAFFER COLLATERAL-CAl is controversial (3-5), but recent studies 
synapses of the hippocampus, LTP is with quanta1 analysis (4, 5) have strength- 
induced by a series of postsynaptic ened the evidence that, after postsynaptic 

events including activation of the N-methyl- induction, LTP is expressed by an increase 
D-aspartate (NMDA) subtype of the gluta- in transmitter release from presynaptic ter- 
mate receptor channel (1) and the influx of minals (6, 7). If the mechanisms underlying 
Ca2+ (2). The site of the expression of LTP the induction and expression of LTP reside 
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