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Folding of Circularly Permuted Transfer RNAs 

All of the ribose-phosphate linkages in yeast tRNAPhe that could be cleaved without 
affecting the folding of the molecule have been determined in a single experiment. 
Circular permutation analysis subjects circular tRNA molecules to limited alkaline 
hydrolysis in order to generate one random break per molecule. Correctly folded 
tRNAs were identified by lead cleavage at neutral pH, a well-characterized reaction 
that requires proper folding of tRNAPhe. Surprisingly, most of the circularly permuted 
tRNA molecules folded correctly. This result suggests that the tRNA folding motif 
could occur internally within other RNA sequences, and a computer search of 
Genbank entries has identified many examples of such motifs. 

T HE TERMINI OF PROTEINS OR RNA 
molecules can play an important role 
in d e h g  their three-dimensional 

structure. Although an amino acid or nucle- 
otide sequence can fold as a motif within the 
polymer chain, the termini can potentially 
either participate in unique interactions or 
be needed to promote a folding pathway. 
One method of evaluating the importance of 
the termini in macromolecular folding is to 
study the properties of the circularly per- 
muted isomers. A circularly permuted poly- 
mer is produced by connecting the normal 
termini and cleaving the backbone at anoth- 
er site. If such a molecule folds normally, 
one can conclude that the termini are unnec- 
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essary for maintaining the structure or spec- 
ifying a folding pathway. However, if the 
circularly permuted isomer misfolds, either 
the correct termini are required to maintain 
the structure, the new termini disrupt the 
structure, or the folding pathway is altered. 
The recent demonstration that two circularly 
permuted isomers of Esrherichia coli phospho- 
ribosyl anthranilate isomerase fold normally 
(1) prompted an investigation of the folding 
of circularly permuted RNA molecules. 

Unmodified yeast tRNAPhe was chosen 
for study because of its well-characterized 
three-dimensional structure (2, 3). Al- 
though the biological functions of tRNA 
require the correct termini, it is possible to 
monitor the folding of tRNAPhe by measur- 
ing its specific cleavage reaction with lead 
(4-7). In this reaction, a Pb2+ ion is bound 
to the nucleotide bases U59 and C60 in the 
T loop and promotes a specific cleavage 
between U17 and G18 in the D loop. An 
analysis of the Pb2+ cleavage rates of more 

than 50 yeast t w h e  mutants reveals that 
the rate of cleavage is very sensitive to the 
folded structure (7). Single mutations that 
disrupt tertiary interactions as far away as 16 
to 20 from the lead binding site show a 3- 
to 20-fold reduction in the cleavage rate. The 
cleavage rate is restored when compensatory 
mutations allow the formation of an alternate 
tertiary interaction (7). The cleavage rate is 
not affected by mutations not expected to 
alter the folding of tRNAPhe (7). Thus, this 
reaction is useful for examining the folding of 
circularly permuted tRNA molecules. - 

Circular permutation analysis (CPA) was 
carried out to determine which of the 76 
possible circularly permuted tRNAPhe mol- 
ecules fold correctly (Fig. l ) .  The G1A 
mutant of tRNAPhe was used because it has 
a mismatched terminal base pair that permits 
efficient formation of a circular tRNA by T4 
RNA ligase (8) without affecting its ability 
to cleave with lead. The starting material for 
CPA was prepared by cleaving the circular 
tRNA with lead, introducing a 32P label at 
the lead cleavage site between U17 and 
G18, and religating the tRNA (Fig. 1A). 
The uniquely labeled circular tRNA mole- 
cules were subjected to limited alkaline hy- 
drolysis under denaturing conditions such 
that each molecule was cleaved no more than 
once and all bonds were cut with approxi- 
mately equal frequency. The resulting collec- 
tion of 76 different circularly permuted tR- 
NAs was renatured and then treated with lead 
in the presence of MgZ+. Those molecules 
that folded correctly, and therefore were 
cleaved with lead, produced an oligonucleo- 
tide with a 3' 32P label at the ribose of U17 
and a 5' terminus at the site generated by 
alkaline hydrolysis (Fig. 1B). For circularly 
permuted tRNAs that did not cleave with 
lead, no such shorter 32P-labeled oligonucle- 
otide was formed. Thus, separation of the 
reaction products on a sequencing gel and 
subsequent autoradiography identified all of 
the folding-permissive backbone breaks. 

A typical CPA experiment is shown in 
Fig. 2A. The conditions chosen for alkaline 
hydrolysis resulted in a nearly uniform pop- 
ulation of breaks when end-labeled linear 
tRNA was hydrolyzed. h i s  striking to find 
that a large number of circularl.~~permuted 
tRNAs still cleaved with lead. We quantitat- 
ed the radioactivity in each band i d  com- 
pared it to the band corresponding to the 
normal tRNA (break at ribose phosphate 1) 
to estimate the relative extent of lead cleav- 
age at each position. Circularly permuted 
tRNAs with 5' termini at 54 of 68 analyz- 
able backbone positions had comparable or 
greater extents of lead cleavage than the 
native tRNA (Fig. 3). These positions in- 
clude virtually the entire acceptor and T 
stems as well most of the anticodon stem 
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Fig. 1. Schematic representation of 
the circular permutation analysis 
(CPA). (A) Introduction of a 
unique label at the lead cleavage 
site. (B) CPA. The cloverleaf form 
of tRNA in (A) is shown as a circle 
in (B). Solid squares indicate the 
position of the unique 3 2 ~  label. C 
and L correspond to circular and 
linear WA, respectively. 

~ 1 ~ ~ ~ ~ 0 ~ M l d ~  2. Lead cleavage kin-, *P] A 

4. RNA llgase 

" 0 5-3' - -- - 
1. Alkaline : : 2. Renature 

hYd~ly81~- 3. +W+ 
(OH-) - 

and loop. Interestingly, lead cleavage is 
strongly enhanced (up to sevenfold) in sev- 
eral circularly permuted tRNAs with breaks 

4 
0 0 + 
0 0 - 4. Denaturing - PAGE 

in the anticdon loop. This result confirms 
an earlier report of increased lead cleavage of 
yeast tlWAphc missing Y37 (5) and sup- 
ports the notion that changes in the anti- 

- -  - - - - - - - - - - - - 

codon conformation can alter the structure 
(9) or dynamics at a spatially distant site. 

All 14 circularly permuted tRNAs not 

L 

cleaved with lead had termini located in the 
central core of the tRNA (Fig. 3). Most of 
these positions are directly involved in ter- 
tiary base pairing, including the highly 
structured G53 to G57 region in the T loop 
and the U8 to A14 region in the D stem. 

Although it is tempting to speculate that 
these highly constrained regions of the mol- 
ecule are more sensitive to chain breakage, it 
is striking that a number of other sites in the 
tRNA core can serve as termini for circularly 
permuted tRNAs. These include all of the 
ribose phosphates in the variable loop and 
the 3' half of the T loop, including the 
ribose phosphates 59 and 60 whose nucleo- 
tide bases actually bind the lead ion. Thus, 
no simple interpretation can be given to 
explain which termini permit correctly fold- 
ed circularly permuted tRNAs. 

We also performed CPA under several 
different buffer conditions known to affect 
RNA folding. Varying the M g +  concentra- 

Fig. 2. CPA of yeast tR.NAPk (19) A 6 
anal~zcd On lo% 5' I.b.1 3'tlb.l - 0.4 0 1 0 2 ~bZ+(rnW - . 1.5 3.0 6.0 

acr~lamidegels.Alka'ineh~drol~is Ti  T i  on- 15 15 7.6 s W*(rnW . 7.5 . . . 
of circular ~RNA'~' (C) yields a I 

mixture of circularly permuted lin- b c 
ear (L) tRNA molecules. Lead C 

cleavage of this mixture at (A) vary- 
ing M$+ and pbZ+ concentrations 
and (B) in 0.4 mM Pb2+ and 7.5 
mM M$+ for varying spermine 
(bottom row, mM) or urea (top w f L L 

row, M) concentrations reveals 
cleavage products for those circu- 
larly permuted tRNA molecules 
that fold correctly. All reactions 
were performed in 5.5 rnM MOPS, .O O -  

pH 7.0. The size of these products .II 48- 

can be determined by comparing to 
the alkaline hydrolysis product " - .53 63.  , 

(OH-) and ribonuclease T1 diges- - 
tion (Tl) of linear tRNA that is 5' .U 68.  - - - - 

* - or 3' 32P-labeled at the lead cleav- - 
- - .w w -  - age site. The numbers pardel to 

the bands correspond to ribose 
phosphate positions that have been 81. 

disrupted by alkaline hydrolysis pri- 
or to lead cleavage. The horizontal - - 
arrows in (B) indicate the bands - -  n n.. . . 

1 - . . that either show significantly 
decreased (pointing to left) or increased (pointing to right) lead cleavage extents. 

tion between 3 and 15 mM (Fig. 2A) or 
addition of 1.5 mM spermine (Fig. 2B) at 
7.5 mM Mg2+ did not significantly alter the 
pattern of bands, even though the intrinsic 
rate of lead cleavage was changed. Similar 
results were observed when CPA was per- 
formed at 37°C. However, in the presence 
of 1.5 M urea or formamide, the extent of 
lead cleavage of tRNAs with breaks at the 
ends of the acceptor helix (ribose phosphate 
67) and T helix (ribose phosphates 66 and 
50) were significantly decreased (Fig. 2B 
and Table 1). Higher concentrations of urea 
or formamide led to destab'ilization of addi- 
tional circularly permuted tRNAs having 
backbone breaks within the T loop (ribose 
phosphates 61,60,59, and 58; see Table 1). 
These results are consistent with the notion 
that certain positions are more important to 
the folding of tRNA and thus more sensitive 
to disruption by RNA denaturants. Howev- 
er, addition of 15% ethanol apparently in- 
duced stabilization of the breaks within T 
loop riboses, including the critical U-turn 
consisting of U54 to G57 (Table 1). This 
stabilization effect by ethanol may be cou- 
pled to transitions of helical conformation as 
observed for DNA helices (10). The CPA 
results performed under varying buffer con- 
ditions strongly suggest that decreasing ex- 
tents of lead cleavage are mostly due to 
defects in folding, not to a decrease of lead 
binding. 

Our experiments indicate that relocation 
of termini of tRNA can often be accom- 
plished without alteration of the basic fold- 
ing geometry. Since most of the new termini 
are on the surface of the tRNA structure 
(Fig. 3B), the chains could be extended in 
both 3' and 5' directions. Thus, tRNA-like 
folding motifs may exist internally within 
the sequences of other RNA molecules. The 
potential presence of such motifs in Gen- 
Bank was examined with the program 
RNAMOT (1 I), which allows the user to 
define combinations of sequence and sec- 
ondary structural elements. In our search, 
the five most highly conserved tertiary inter- 
actions within the tRNA core were re- 
quired. Since both the acceptor stem and 
anticodon hairpin are not part of the central 
core and can be reduced to three or fewer 
base pairs without affecting lead cleavage 
(12), these regions were allowed to vary. In 
addition, the number of nucleotides in the a 
region (residues 16 and 17) were permitted 
to vary from 1 to 20 nucleotides, based 
upon a range of lengths observed in natural 
tRNAs and the existence of a synthetic 
tRNAPhc variant with 12 extra nucleotides 
that cleave with lead normally (12). 

Searches for circularly permuted tRNA- 
like folding motifs were performed with 
termini at the folding-permissive positions 
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Flg. 3. Summary of CPA in 5.5 mM MOPS, pH 7.0,7.5 mM Mg+,  and 0.4 mM PbZ+. Yeast tRNAPhe 
was pnsemed e i k  in its secondary (A) or mtiary (B) mucture. The solid cirdes (A) or red spheres (B) 
rep- positions where the ribose phosphate can be dimptcd and the resulting circularly permuted tRNAs 
att comedy folded. The open cirdes (A) or blue spheres (B) indicate positions where the backbone breaks 
reduce the extent of lead cleavage by more than fivefbld If no circle or sphere is shown, the c o ~ p o n d q  
ribose phosphate positions could not be analyd because ofthe resolution ofthe gel elecnophoresis. The size 
of& solid cirdes (A) or red spheres (B) present the ratios of& lead cleavage relative to that ofthe standad 
tRNA (brcak at ribose phosphate 1): (*), 0.3 to 0.8; (o), 0.8 to 3.0; and (e), 3.0 to 7.0. The ribose positions 
1 5 t o l a n d 7 6 t o 7 4 w a c ~ o n 2 0 % ~ g e l s .  

27, 48, and 58 (Fig. 4B). In the -55 
million nudeotides in GenBank 67.0, a 
number of such motifs (20, 21, and 105, 
respectively) were found in the sense 
strands of known genes. Four examples of 
such motifs are shown in Fig. 4, C to F. In 
each case, the presence of one or more 
potential base triples that were not includ- 
ed in the search reinforces the notion that 

ACW r 

A s:: 
0 - 2  
a-U 
A-u 
U-. 

these RNAs fold like tRNA. 
Why might tRNA-like folding motifi ex- 

ist in other RNA molecules? One possibility 
is that, like the hairpin or the pseudoknot, 
the tRNA motif is simply an efKcient means 
of folding RNAs into a compact tertiary 
structure. In addition, tRNA-like motifs can 
potentially interact with one of the many 
tRNA binding proteins present in the cyto- 

a-U 
u-a 

a-c u -A 
c-a 

1 

c-a c i6i C A  Au  O g C  A U 

Flg. 4. Examples of cirmlarly permuted tRNA-like motifs in the GenBank version 67.0. (A) Yeast 
tRNAPhs. (B) Schematic presentation ofthe descriptor (22) (N; any nudeotide; R, A or G; Y, C or T; 
and S, C or G). Thc arrows indicate the 5' termini (ribose phosphate 27,48, and 58) of the circularly 
permuted tRNAs in the search. (C) Mouse BCL-2 gene, 3' muanslated region [nudeotides (nt) 7513 
to 76101. (D) Euherichia coli tufA gene (nt 507 to 613). (E) Caenorhabditis elegans myo-3 gene, exon 
6 (nt 6789 to 6888). (F) Influenza PB1 polymerase gene (nt 2081 to 2183). The five temary base-base 
interactions retained in our search are connected by solid lines. The potential base triples are boxed and 
connected by dashed lines. The numbers embedded in semicircles indicate the actual number of 
nucleotides found in the loops that were variable in our search program. 

Table 1. CPA of yeast tlWAphs in the presence 
of denaturants. 

Ribose phosphate positions 
where lead cleavage rate: Denaturant 

Increases Decreases 

Urea(l.5M) 41 67, 66,61, 50,45 
Urea (3.0 M) 49 68, 67, 66, 61, 60 

59,58, 50,45 
Formarnide 67, 66, 45 

(15%) 
Forrnamide 67, 66, 61, 60, 

(30%) 59, 50,45 
Ethanol 

(15%) 

plasm at high concentrations. Indeed, the 
ability of some bacterial tRNA synthetases 
to bind to a tRNA-like structure in their 
own mRNA and repress translation is well 
documented (13). The tRNA motifs found 
in the coding sequence of the E. coli tufA 
and Caenorhabditk elegans myo-3 gene (Fig. 
4, D and E) may have a similar regulatory 
function. Binding proteins for tRNA may 
interact with the motif in the 3' untranslated 
region of the mouse BCL-2 gene (Fig. 4C) 
and affect processing or mRNA stability. 
The tRNA-like structure in the influenza 
virus (Fig. 4F) may be required for infection 
as has previously been demonstrated for 
tRNA-like structure at the 3' terminus of 
many plant viral genomes (14). 

It is likely that many of the backbone 
breaks that allow proper folding of circularly 
permuted tRNA may also permit correct 
folding in standard tRNA. Lead cleavage of 
tRNAPhe cleaved at ribose phosphate 37 has 
been previously reported (5, 15). Another 
construct that consists of two fragments 
comprised of nucleotides 1 to 48 and 47 to 
76 and that is analogous to a circularly 
permuted tRNA with a break at ribose 
phosphate 47 also shows a normal rate of 
lead cleavage (12). The propensity for RNA 
molecules to maintain structure and activity 
in the presence of backbone breaks has been 
noted (16) and was exploited to convert 
autocatalytic RNAs into RNA enzymes that 
exhibit multiple nunovers (17, 18). If a selec- 
tion procedure is available, CPA can be used 
with other RNAs to systematically locate 
ribose backbone positions where the phos- 
phodiester bond can be disrupted without 
& d g  folding. We expect that, as with 
tRNAPk, other RNAs may often have a high 
enough local energy of folding to compensate 
for chain cleavage so that many folding per- 
missive backbone breaks would be found. 

Many RNA molecules have their 5' and 3' 
termini in close proximity because of the 
presence of complementary sequences that 
result in helix formation. Perhaps circular 
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permutation may have played a role in the 
evolution of these RNAs. Some RNA folding 
motifs may have evolved with very different 
termini prior to a rare event where a circular 
RNA intermediate is formed and cleaved at a 
different location to result in circularly per- 
muted RNA. Subsequent reverse transcrip- 
tion could convert the circularly permuted 
motif back into DNA. Such events may ex- 
plain the appearance of circularly permuted 
tRNA-like motifs in other RNAs or may 
suggest that tRNA itself originally appeared 
as a circularly permuted isomer. 

- -~ 
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Viviparous Leaves Produced by Somatic Activation of 
an Inactive Cytokinin-Synthesizing Gene 

Tobacco plants that are somatic mosaics for expression of a cytokinin-synthesizing 
gene have viviparous leaves. Such a formation of shoots in an abnormal position 
represents a significant deviation hom the usual organization of the plant body where 
a central axis produces shoots only in the axils of lateral leaf appendages and according 
to'a precise phyllotactic pattern. This report links vivipary to the expression of a gene 
whose product is involved in the synthesis of the phytohormone cytokinin. 

u NDER NATURAL PLANT GROWTH 
conditions, leaves that form adven- 
titious buds on their surfaces or 

edges are said to be viviparous (1, 2). De- 
pending on the plant species, this manifes- 
tation of totipotency of differentiated leaf 
cells is a phenomenon occurring either as 
part of a normal developmental process (3, 
4) or as a teratological event (1). Knowledge 
of the underlying cellular mechanisms is 
scant. We report-here that vivipary is ac- 
quired by tobacco leaves that are somatic 
genetic mosaics for the expression of a cyto- 
kinin-synthesizing gene. 

In culture with added growth regulators, 
leaf explants of several species express new 
developmental patterns (5) .  In particular, 
cytokinins are routinely used to regenerate 
plants from explants (5) .  Expression of cy- 
tokinin in vivo was altered here with the use 
of the crown gall ipt gene. Crown galls are 
neoplastic tissues resulting from the 
transfer and expression of oncogenes carried 
on a transferable DNA segment (T-DNA) of 

the Ti plasrnid of the bacterial pathogen 
Agrobacterium tumefaciens. One of these onco- 
genes, ipt, codes for an isopentenyltransferase, 
which is involved in cytokinin synthesis (6). 
Expression of the ipt gene under the control 
of the 35s RNA promoter from cauliflower 
mosaic virus ( c~Mv)  increases the cytokinin 
content up to 137 times in transgenic shoots 
of Nicotiam tabacum, N. mstica, and N. plum- 
bagingolia (7). These shoots exhibit loss of 
apical dominance and are unable to root (7, 
8). The ipt gene under control of inducible 
(9-11) or tissue-specific promoters (12) cir- 
cumvents the inhibitory effect of high endog- 
enous levels of cytokinin on root formation. 
However, most inducible proploters have a 
low basal level of constitutive ex'pr&si.on, and 
tissue-specific promoters have Iodized 
expression occurring only after differentia- 
tion, limiting the study of the influence of 
cytokinins on plant development. 

We have inserted the maize transposon 
Ac (13-16), into the untranslated leader 
sequence of the 35s-ipt gene to inactivate 
the ipt gene (Fig. 1). somatic transposon 
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