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DNA Bending by Fos and Jun: 
The Flexible Hinge Model 

DNA bending is essential for the assembly of multiprotein complexes that contact 
several DNA sequence elements. An approach based on phasing analysis was developed 
that allows determination of both the directed DNA bend angle and the orientation of 
DNA bending. This technique has been applied to the analysis of DNA bending by the 
transcription regulatory proteins Fos and Jun. Complexes that contained different 
combinations of full-length and truncated Fos and Jun induced DNA bends of 
different magnitudes and orientations. The DNA bends induced by the individual 
proteins were determined on the basis of a quantitative model for DNA bending by 
dimeric complexes. This information was used to visualize the consequences of DNA 
bending by Fos and Jun for the structures of Fos- Jun-DNA and Jun-DNA complexes. 

E UKARYOTIC GENE TRANSCRIPTION IS 

modulated by combinatorial interac- 
tions among sequence-specific DNA 

binding proteins (1). For interactions to 
occur between proteins bound to separate 
sequence elements, the DNA helix must 
often be distorted. Protein-induced DNA 
bending can participate in the regulation of 
transcription by facilitating assembly of ini- 
tiation complexes (2). Thus, it is important 
to determine the orientation and magnitude 
of DNA bends induced by transcriptional 
regulatory proteins. 

The proto-oncogenes crfos and c-jun en- 
code proteins that are members of the bZIP 
family of DNA binding proteins, which 
bind DNA as homo- or heterodimeric com- 
plexes (3). Dimerization is mediated by a 
leucine zipper interaction, and DNA bind- 
ing requires an adjacent region that contains 
a high density of basic amino acids (4). This 
basic DNA binding domain adopts an a-he- 
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lical structure upon binding to DNA ( 5 ) .  
Models of the DNA binding complexes of 
bZIP proteins assume that the DNA bind- 
ing domain interacts with a straight B-form 
DNA (B-DNA) recognition site (6, 7). 
However, contacts between a straight a 
helix and the major groove of straight 
B-DNA are limited to a maximum of 12 
contiguous amino acids, which can contact a 
maximum of 5 bp on DNA. In contrast, the 
basic region extends over 20 residues, and 
the DNA contact regions for proteins in the 
bZIP family range between 12 and 16 bp 
(8). Thus, the basic region a helix or the 
DNA recognition site or both must be bent 
or distorted to allow for the observed re- 
gions of contact between the molecules. 

Procedures have been developed to inves- 
tigate protein-induced DNA bending that 
rely on the anomalous electrophoretic mo- 
bilities of bent DNA fragments (9, 10). 
Using these methods, we demonstrated that 
Fos-Jun heterodimers and Jun homodimers 
induce bends in opposite orientations and 
that complexes composed of peptides en- 
compassing the dimerization and DNA 
binding domains bend DNA in the same 
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Fig. 1. Circular per- 
mutation analysis of 
protein-induced DNA 
flexure. (A) Electro- 
phoretic mobility shift 
analysis of Fos-Jun 
(241-334) and Fos 
(139-211)-Jun heter- 
odimers (12) bound 
to circul&lY 'permut- 
ed probes. The pro- 
tein dimers were in- 

FOS- Fa~(139-211) 
A Jun(241-334) -Jun 

A C F H J L N O A C F H J L N O  

g 0 - 4 0  0 40 - 8 0 - 4 0  0 40 tY 
Posltlon oi AP-l slte 

cubated with probes 
that contained an AP-1 site at different positions relative to the ends of the fragment (1 1). AU probes 
were 133 bp in length and contained different circular permutations of the same sequence. The 
complexes were analyzed by polyacrylamide gel electrophoresis (PAGE) (11). (B) The relative 
mobilities of Fos-Jun(241-334) and Fos(139-211)Jun complexes shown as a function of the position 
of the AP-1 site. There was no significant variation in probe mobilities in the absence of protein 
biding. The relative mobilities represent the average from three independent experiments, and the SDs 
are shown as vertical bars. The maximum is shown by an arrow, and the SD of maxima from different 
experiments is shown by a bar at the base of the arrow. The points are connected by the best fit of a 
cosine function (14). 

(13) for measurement of the DNA flexure 
angle (aF) (14) to determine the DNA 
flexure angles induced by various combina- 
tions of Fos and Jun proteins and peptides 
(Table 1). These flexure angles are similar in 
magnitude to those induced by various pro- 
karyotic DNA bending proteins (13). 

Phasing analysis provides a specific meth- 
od for the idenscation and analysis of 
DNA bends and is based on the phase- 

orientations as the U-length proteins but 
induce smaller DNA bend angles (1 1). 
However, on the basis of these results, it was 
not possible to determine whether the op- 
posite DNA bending properties were inher- 
ent to Fos and Jun or caused by a difference 
between hetero- and homodimeric complex- 
es. To determine the effect of each protein 
and peptide on DNA bending, we have used 
a new quantitative approach to measure the 
orientation and magnitude of DNA bends 
induced by various combinations of Fos and 
Jun proteins and peptides. 

The standard method for investigation of 
distortions in DNA structure, circular per- 
mutation analysis, is based on the position- 
dependent effect of DNA distortions on the 
electrophoretic mobilities of DNA frag- 
ments (9). When a distortion such as a bend 

is located at the center of a DNA fragment, 
the mobility of the fragment is retarded 
relative to that of a fragment of identical size 
that has the distortion at one end. Circular 
permutation analysis does not specifically 
detect DNA bends, because the method is 
also sensitive to other distortions in DNA 
structure, such as locations of increased 
DNA flexibity. Therefore, structures that 
cause a mobility variation in circular permu- 
tation analysis should be referred to as loca- 
tions of DNA flexure, and the apparent 
DNA bend angle should be designated the 
DNA flexure angle. Cirmlar permutation 
analysis of Fos-Jun(241-334) and Fos(139- 
21 1)- Jun heterodimers [for nomenclature, 
see (12)] demonstrated that both complexes 
induced distortions in DNA structure (Fig. 
1). We have extended previous methods 

Table 1. DNA flexure and bending by dimeric complexes of different 
combinations of Fos and Jun proteins and peptides (12). The mobility 
anomaly is the ratio between the slowest and fastest migrating complexes 
(13). The DNA flexure angle was determined from the amplimde of the 
circular permutation function (14). The directed bend angle was determined 
from the amplitude of the phasing function (1 6). The orientation of bending 
was determined as described (1 1) and is expressed as an angle relative to the 
major groove-minor groove axis at the center of the AP-1 site. The 

dependent interaction between a p;otein- 
induced DNA bend and an intrinsic DNA 
bend located on the same DNA fragment 
(10, 11). Two in-phase bends cooperate to 
increase the overall bend angle, whereas 
out-of-phase bends counteract each other to 
reduce ;he overall bend angle. Phasing anal- 
ysis therefore allows one to discriminate 
between directed DNA bends and other 
distortions in DNA structure as well as to 
determine the orientation of DNA bends 
relative to the known orientation of intrinsic 
DNA bends containing phased A:T tracts. A 
critical difference between the phasing anal- 
ysis performed here and phase-sensitive de- 
tection methods used in previous studies 
(10) is that here the protein binding site for 
Fos and Jun and the intrinsic DNA bend are 
directly abutting. As a consequence, DNA 
fragments that contain adjoining protein- 
induced and intrinsic bends can be approx- 
imated to contain a single bend, the orien- 
tation and magnitude ofwhich represent the 
net sum of the protein-induced and intrinsic 
DNA bends. 

Phasing analysis of Fos-Jun(241-334) 
and Fos(139-211)-Jun heterodimers dem- 
onstrated that Fos-Jun(241-334) induced a 
larger mobility variation than any of the 

orientation of intrinsic DNA bending toward the minor groove at the center 
of the A:T tract (10) was used as a standard and defined as 0". The values 
represent averages and SDs derived from multiple independent experiments. 
Where no SD is given, the number of experiments was insficient to give a 
meaningful SD. The DNA bend angles and orientations predicted on the 
basis of the independent DNA bends model were calculated as described in 
Fig. 3. The SDs of the predicted values were determined by propagation of 
errors. NA = not applicable. 

Circular permutation andysis Phasing analysis Independent bends model 

Protein dimers Mobility Circular Flexure Phasing Directed Bend Directed Bend 
anomaly pez$zz angle amplimde bend angle orientation bend angle orientation 

(kMax/~Min) ( A ~ ~ )  @F) ( A ~ ~ )  @B) (PB) @B') (PB') 

FOS Jun 
Jun-Jun 
Fos(139-211)-Jun(241-334) 
Jun(241-334)-J~n(241-334) 
Fos-Jun(241-334) 
Fos(139-211)-Jun 
Fos(118-211)-J~n(225-334) 
Jun(225-334)-J~n(225-334) 
Fos-Jun(225-334) 
Fos(ll8-211)-Jun 
Probes 
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Fig. 2. Phasing analysis A Jun 22;334 -!::211) B mined the bend angle and orientation pre- 
o f ~ r o t e i n - i n d u c e d ~ ~ ~  ,d 2e 28 k *I 23 , 28 , dicted for each complex on the basis of the 
bending. (A) Electro- 
phoretic mobility shifi O'  

remaining complexes. The DNA bend angle 
analysis of Fos-Jun(241- n and orientation of each complex could be 
334) and Fos(139-211)- predicted on the basis of the bends induced 
Jun' heterodhers (12) 
bound to phasing analy- 
sis probes. The protein 
dimers indicated above 
the hnes were ~ r e ~ a r e d  
by association oip&fied 

by the remaining complexes, with a maxi- 
mum error of 5" in bend angle and 30" in 
bend orientation [the orientations of 

6 8 0 ,, 8 F0~(139-211)-J~n and Fo~(118-211)-Jun 
bending were not defined because thw did 

proteins and weie incu- not indyce DNA bend angles]. 
bated with probes that 
contained an AP-1 site separated by a variable length spacer from an intrinsic DNA bend (11). The The DNA bend angles and bend orienta- 
numbers above the lanes indicate the distance between the centers of the AP-l site and the intrinsic tions determined for the individual Fos and 
DNA bend in base pairs. With the exception of the variable spacer length, all probes were of the same Jun proteins (Fig. 3B) provide information 
size (350 to 360 bp) and contained the same sequences. The complexes were analyzed by PAGE (11). about the path of the DNA helix within the 
(B) The relative mobilities of Fos-Jun(241-334) and Fos(139-211)-Jun complexes shown as a function  protein-^^^ complex. we used molecular 
of spacer length. The complex mobities were corrected for variations in probe mobities, normalized 
to the average mobity of all  complexes, and plotted as a function of spacer length. The relative graphics to analyze the of 
mobilities represent the average from three independent experiments. SDs and maxima are represented DNA bending for the structure of the pro- 
as in Fig. 1. The points are connected by the best fit of a cosine function (16). tein-DNA complex. The DNA binding do- 

mains of Fos and Jun are predicted to be 
highly a-helical (5) and to contact the DNA 

other complexes tested, whereas Fos(139- Fos(139-211)-Jun complex. Because other helix within the major groove (8, 17). 
211)-Jun caused little variation in complex complexes that contained Fos(139-211) or Therefore, we investigated how a-helical 
mobilities (Fig. 2). This result is in contrast Jun did induce DNA bending, and because DNA binding domains would fit into the 
to the results from circular permutation the Fos(139-211)-Jun heterodimer induced major groove of a bent DNA helix (Fig. 4). 
analysis, in which both complexes induced DNA flexure, the simplest interpretation is The predictions from the DNA structure 
similar variations in mobility (Fig. 1). Be- that the DNA bends induced by Fos(139- analysis depart in several respects from other 
cause phasing analysis specifically detects 211) and Jun counteract each other. The models for leucine zipper-basic region pro- 
DNA bends, whereas circular permutation orientation of the small remaining bend teins (6, 7). Most obviously, the DNA helix 
analysis is affected by other distortions in angle was perpendicular to the bends in- is bent in both the Fos-Jun-DNA and Jun- 
DNA structure, a likely interpretation of duced by Fos- Jun heterodimers and Jun DNA complexes. The opposite orientations 
these results is that Fos-Jun(241-334) in- homodimers, which is consistent with can- of DNA bending induced by Fos and Jun 
duced a directed DNA bend, whereas cellation of the major vector components of suggest that their basic regidns adopt differ- 
Fos(139-211)-Jun induced little or no net DNA bending in this complex. We desig- ent structures upon DNA binding. Fos 
DNA bending but increased the flexibility of nate this structure that contains two bends bends DNA away from the h e r  interface, 
the AP-1 site (15). To determine the mag- of opposite orientations a DNA "jog." causing the major groove to extend in a 
nitude of the DNA bend angle, we derived a The DNA bend angles and orientations relatively linear fashion over the region of 
relation between the directed DNA bend induced by individual Fos and Jun subunits the recognition site (Fig. 4a). This DNA 
angle (aB) and the amplitude of the phasing were determined on the basis of a quantita- bend obviates the need to invoke a bend in 
function (A,,) that allows determination tive model that finds the best fit of the sums the basic region a helix of Fos. Instead, the 
of the directed DNA bend angle indepen- of subunit bends to the observed h e r  Fos basic region can extend as a contiguous 
dent of other contributions to DNA flexure bends (Fig. 3). This quantitative model a helix fiom the leucine zipper to the end of 
(16). On the basis of this relation, we deter- could accurately reproduce the DNA bend the basic region (Fig. 4b). The backbone 
mined the directed DNA bend angles for angles and orientations of all of the com- dihedral angles of the invariant asparagine 
various combinations of Fos and Jun pro- plexes (Table 1). To further test this model, residue in Fos are within the normal range 
teins and peptides (Table 1). we omitted individual complexes and deter- for residues within an a helix (Fig. &). 

The DNA bend angles and orientations 
induced by Fos and Jun complexes (Table 1) 
demonstrated that neither the bend angle Fig. 3. Determination of DNA bend an- 
nor the bend orientation was a simple func- gles and orientarions induced by individual 
tion of the molecular mass, the charge, or Fos and Jun proteins and peptides based - 
the heterodimer versus h o r n h e r  nature on the independent DNA bends model. r e l m  

(A) The DNA bends induced by various of the To =plain the hewm- and homodimm complexes are rep- 
DNA bend angles and orientations, we de- resented as vectors, the lengths of which 

- -30 

veloped a model for DNA bending by Fos indicate the magnitude of the DNA bend 
and June In this model, each subunit of the angles and the directions of which indicate 

heic complex induces an independent the orientation of bending at the center of sosl, ~7.4. SZII 

the AP-1 site [closed arrows in (A)]. (B) 
DNA bend of characteristic orientation and We the predicted DNA bends 
magnitude, and the overall DNA bend angle for each subunit [closed arrows in (B)] by finding the best fit of the predicted subunit bend vector sums 
reflects the sum of the bends contributed by [open arrows in (A)] to the dimer bend vector data [closed arrows in (A)]. The calculated DNA bend 
each subunit. A specific that can angle and orientation for each subunit is shown in brackets [a,', p,']. For simplicity, the DNA bend 

angles and orientations of only six different dimers composed of four individual proteins and peptides be =PIained by this but not by are shown. For the actual model, 13 different dimers composed of sewn individual proteins were used 
several other models we considered, was the in the initial calculation, and additional complexes were subsequently added. Therefore, the number of 
absence of a directed DNA bend in the complexes was much larger than the number of independent variables in the model. 
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Fig. 4. Molecular graphics 
illustrations of the "flexible 
hiige" models of Fos(red)- 
Jun(b1ue) heterodimer (a 
through C) and Jun ho- 
modimer (d through t) 
complexes bound to the 
AP-1 recognition sequence 
(orange) (24). The leucine 
zipper (violet) was based on 
a standard coiled-coil con- 
formation. The side chains 
of the basic residues within 
the DNA biding domain 
(magenta) are in a position 
where they can make elec- 
trostatic contacts with the 
phosphodiester backbone 
(yellow). The Cys, Ala, Ah, 
and Asn residues (green) in 
the DNA binding domain 
are conserved throughout 
the bZIP protein family. (a 
and d) Space-filling models 
show the dose fit between 
the a helices and the major 
grooves of the bent DNA 
helices. (b and e) Backbone 
ribbon models show the Fos 
(red) DNA binding domain 
as a contiguous a helix, 
whereas the Jun (blue) 
DNA biding domain con- 
sists of two separate a-heli- 
cal segments. (c and f) A 
close-up view of the geome- 
try of the peptide backbone 
around the invariant aspara- 
gine residue (white armw). 

In contrast to Fos, Jun bends DNA Both characteristics could contribute to 
toward the dirner interface, which requires 
distortion of the basic region cx helix (Fig. 
4 4 .  It has been proposed that the bas% 
region of bZIP proteins consists of two 
a-helical segments separated by a turn at an 
invariant asparagine residue (6). The m a -  
ture of the major groove in the bent DNA 
helix fits well with the angle between two a 
helices generated by an asparagine N cap in 
one of the two conserved conformations ($ 
= 100') (18) (Fig. 4e). However, because of 
the bend in the DNA helix, the geometry of 
the turn between the Jun cx hehces in this 
model is different from that suggested pre- 
viously (Fig. 4f ). The orientation of DNA 
bending induced by the Jun homodimer 
predicts that the dimer interface is displaced 
from the center of the recognition site (19). 
Consequently, although the core of the 
AP-1 recognition sequence is palindromic 
and the DNA biding domains of the Jun 
homodimer are to be symmetric, 
the complex between the two is asymmetric. 
This result is consistent with mutational 
studies suggesting that the AP-1 site is 
recognized in an asymmetric manner (20). 

Our results indicate that Fos and Jun 
induce directed DNA bending and an in- 
crease in flexibility of the AP-1 site (15). 

transcription regulation by Fos and Jun. 
Fos and Jun are induced in many cell 

types, and therefore their target gene spec- 
ificity is likely to depend on the cellular 
context (21). The situation is complicated 
by the existence of several Fos- and Jun- 
related proteins that form dimers with 
similar DNA binding properties (22) and 
form heterodimers with several members 
of the CREB-ATF protein family (23). 
DNA binding by a specific bZIP dimer 
may induce a characteristic DNA confor- 
mation in target sequences and cause dis- 
tinct transcriptional responses. Alternative- 
ly, because of flanking sequences or the 
presence of other DNA binding proteins, 
different target elements may favor distinct 
conformations that allow recognition by 
specific bZIP dimers. In either case, induc- 
tion of independent DNA bends by each 
subunit in the complex provides a mecha- 
nism for the integration of separate signal- 
ing pathways. 
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Genetic Mosaics in Strangler Fig Trees: 
Implications for Tropical Conservation 

Single trees of six species of strangler figs (Ficus spp., Moraceae) in Panama were found 
to be made up of multiple genotypes, presumably formed by the fusion of different 
individuals. The phenomenon is frequent enough that strangler fig populations will 
contain considerably more genetic variation than would be expected from the number 
of trees. How this cryptic variation affects populations depends on the flowering 
phenology of composite trees. If the genetically different portions of trees flower 
asynchronously, populations of pollinating wasps may be more resistant to low host 
population sizes than previously thought. If different portions flower synchronously, 
attempts to infer mating-system parameters from the parentage of Gvit crops will be 
misleading. The fruiting of figs, which are considered a keystone species in tropical 
forests, is important for maintaining biodiversity but is also particularly susceptible to 
failure at small population sizes. It is therefore important to know both the number of 
trees and the number of genotypes in a population. 

J ANZEN (1) HAS MARSHALLED A COM- 

pelling argument that figs (Ficus spp., 
Moraceae) possess sufficient biological 

peculiarities to render them fundamentally 
different from other tropical trees. Most of 
these distinctions arise from the fig's need 
for pollination by tiny, species-specific 
wasps (Agaonidae) that develop within the 
specialized inflorescences (1-3). The classi- 
cal view [to which exceptions exist (4)] is 
that flowering and fruiting episodes are 
tightly synchronized: A tree releases a huge 
crop of pollen-bearing female wasps that 
must locate a conspecific tree that is at the 
proper (earlier) developmental stage to re- 
ceive wasps; there, they can oviposit inside 
the inflorescences. Wasps of both sexes 
grow, pupate, and mate as the inflorescences 
develop; then the females leave to renew the 

cycle. This within-tree synchrony is coupled 
with between-tree asynchrony in flowering 
and fruiting, which is necessary to maintain 
populations both of pollinating wasps and, 
because some fig fruits are available all year, 
of fruit-eating vertebrates: "All the larger 
primates use figs heavily, as do procyonids, 
marsupials, gums, trumpeters, toucans, and 
many other birds . . . . Subtract figs from the 
ecosystem and one could expect to see it 
collapse" (5). 

Figs are regarded as keystones (5-8) for 
conservation in many [if not all (9 ) ]  tropical 
forests, yet their flowering asynchrony ren- 
ders them particularly vulnerable to forest 
reduction and fragmentation (6, 10). Al- 
though species of figs are numerous in most 
tropical forests, individuals are typically 
sparse (1, 6). Simulation models based on 
fig phenologies (4, 11, 12) suggest that 
about 100 trees may be necessary to main- 

J. D. Thomson and J. L. Stone, Department of Ecology tain local populations of the wasps, leading 
and Evolution, State University of New York, Stony 
Brook. NY 11794. to a proposal that 300 trees might be con- 
E. A. Herre. Smithsonian Tropical Research Institute. P. sidered a minimum viable ~ o ~ u l a t i o n  size 
0 .  Box 2072, Balboa, ~anam'a. 
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J, L, Hamrick, Departments of Botany and Genetlcs, (6); die within a few if no tree is 
Athens, GA 30602. receptive when they are released, and fig 
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