
delivery system would have to distribute the 
material over the volume, or one would have 
to allow adequate time for slow internal 
mixing. The possibility that the vortex re- 
gion exchanges and processes air from lower 
latitudes (32) could lead to some losses of 
the added alkanes. If instead the gases 
would be introduced into the stratosphere 
before the vortex sets up (when there is 
more mixing), much larger quantities 
would be needed, and their chemical fate 
would be more uncertain. Experiments can 
be imagined with vertically thin atmo- 
spheric layers wherein the injected hydro- 
carbons would be consumed (reaction 1) 
and the present concept could be tested. 
Before any actual injection experiment is 
undertaken there are many scientific, tech- 
nical, legal, and ethical questions to be 
faced, not the least of which is the issue of 
unintended side effects (33). 
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Transgenic Plants with Enhanced Resistance to the 
Fungal Pathogen Rhizoctonia solani 

The production of enzymes capable of degrading the cell walls of invading phytopatho- 
genic fungi is an important component of the defense response of plants. The timing 
of this natural host defense mechanism was modified to produce fungal-resistant 
plants. Transgenic tobacco seedlings constitutively expressing a bean chitinase gene 
under control of the cauliflower mosaic virus 35s promoter showed an increased 
ability to survive in soil infested with the fungal pathogen Rhizoctonia solani and 
delayed development of disease symptoms. 

P LANTS RESPOND TO A'JTACK BY 

pathogenic fungi by mobilizing a 
complex network of active defense 

mechanisms (1 ) . These include modifica- 
tions designed to strengthen the plant cell 
wall and thereby restrict or inhibit access of 
the pathogen to the plant cell. More ag- 
gressive tactics involve the synthesis of 
toxic antimicrobial compounds (phytoalex- 
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ins) and the induction and accumulation of 
proteinase inhibitors and lytic enzymes 
such as chitinase and 6-1,3-glucanase. The 
success of the plant in warding off phyto- 
pathogen invasion appears to depend on 
the coordination between the different de- 
fense strategies and the rapidity of the 
overall response (2). 

Chitinase catalyzes the hydrolysis of 
chitin, a 6-1,4-linked polymer of N-acetyl- 
D-glucosamine and a major component of 
the cell wall of most filamentous fungi ex- 
cept the Oomycetes (3). Although chitinase 
is generally found at low or basal levels in 
healthy plants, its expression is increased 
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during pathogen attack (4), and it accumu- 
lates intracellularly in the central vacuole 
(5) or extracellularly in the intercellular 
space (6). Evidence for the role of chitinase 
in the defense response of the plant has 
been largely dependent on data obtained in 
vitro. The purified enzymes from tomato 
and bean hydrolyze isolated fungal cell 
walls (7, 8). The enzyme from pea alone or 
in combination with 6-1,3-glucanase in- 
hibits the growth of certain pathogenic 
fungi in culture (9). In addition, the acti- 
vation profile of a bean chitinase promoter 
during fungal infection indicates that chiti- 
nase expression is intimately associated 
with the response of the plant to pathogen 
invasion (10). 

Because the timing of the defense re- 
sponse contributes to the outcome of the 
interaction between host and pathogen, we 
have eliminated the temporal factor in 
chitinase gene expression. We find that 
constitutive expression of a bean endo- 
chitinase gene in transgenic tobacco and 
canola plants affords increased protection 

Flg. 1. (A) Srmcnue of the intermediate plasmid 
pKNK (17), pK35CHN641, and pK35CHN- 
695. The plasmids pK35CHN641 and pK35- 
CHN695 contain an Eco IU-Bgl lI DNA frag- 
ment encoding the chimeric 35S-chi~ase gene 
(13). (B) Immunoblot of protein from control 
and 35S-chitinase tobacco plants. Soluble protein 
from leaf (I), stem (s), and root (r) tissue was 
fractionated by SDS-polyacrylamide gel electro- 
phoresis (29), and the bean chitinase polypeptide . . 
was v m a k d  by alkaline phosphatase-linked de- 
tection of antibodies to chitinase (16). Plants 230 
and 238 were transformed with pK35CHN695, 
and plants 329 and 373 were transformed with 
pK35CHN641. Plant 548 was transformed with 
pKNK. Lanes 1 to 15,lO ~g of tobacco protein; 
lane 16, 20 kg of ethylene-treated bean leaf 
protein. 

against disease caused by the fungal patho- 
gen R. solani. " 

A hybrid c h i ~ a s e  gene was constructed 
by the replacement of the 5' regulatory 
region of a bean endochitinase CH5B gene 
(11) with the promoter region of the Guli- 
flower mosaic virus (CaMV) 35s transcript, 
a highly active promoter that is able to 
function in a wide variety of plant cell types 
(12). The chimeric 35S-chitinase genes, 
contained in the plasmids pK35CHN641 
and pK35CHN695 (Fig. 1A) (13), were 
mobilized fiom Eccherichia coli ~ ~ 1 0 1  into 
Agrokterr'um tumejkiens strain GV3850 
(14) and used to infect leaf disks of Nicotiana 
tubacum cv. Xanthi (15). 

Of the 47 kanamycin-resistant primary 
transformants that were regenerated, 22 
were screened for exmssion of the bean 
chitinase polypeptide by immunoblot analy- 
sis (Fig. 1B) (16). All were found to contain 
a band that was immunoreactive with ply-  
clonal antibodies to bean chitinase and iden- 
tical in size to the protein from bean. No 
cross reaction was detected with soluble 
protein isolated either from wild-type tobac- 
co or fiom tobacco transformed with an 
otherwise identical construct pKNK (17) 
that lacked the 35S-chitinase gene (control 
plants). The size of the protein, indistin- 
guishable fiom the size of the native bean 
polypeptide, suggested that the precursor 
protein was correctly processed in the heter- 
ologous tobacco system. Somewhat higher 
amounts of bean chitinase protein were 
found in the roots of the A g e n i c  plants 
than in the leaves. Out of four randomly 
selected transformants, 238 displayed the 
lowest amount of bean chitinase; 373 
showed the strongest expression of the bean 
chitinase polypeptide. Assays of protein ex- 
tracts indicated increased chitinase enzyme 
activity in the 35S-chitinase transformed 
plants (Table 1) (18). Homozygous progeny 
showed a two- to fourfold increase in the 

Table 1. ChiMax enzyme activity of leaf, stem, 
and root samples of control and 35s-chitinax 
tobacco plants (18). The specific activity 
[nanoKatal (nkat) per milligram of protein] (8) 
is defined as that amount of enzyme which 
releases 1 nmol N-acetyl-D-glucosarnine per sec- 
ond per milligram of protein; 548, control 
plants; and 238 and 373, 3 5 S - C h i ~ a ~ e  tobacco 
plants. 

Chitinax activity (nkat) 
Plant per milligram of protein 
no. 

Leaf Stem Root 

roots and a 23- to 44fold increase over 
control plants in chitinase enzyme activity in 
the leaves. These results demonstrate that 
the chimeric 35s-chitinase gene was func- 
tional in tobacco and gave rise to constitu- 
tive expression of the bean polypeptide in 
healthy plants. Transgenic tobacco plants 
constitutively expressing bean chitinase 
showed no obvious difference in growth and 
development when compared to control or 
wild-type tobacco plants. 

The 35s-chitinase tobacco plants were 
assayed for resistance to the phytopathogen 
R. solani (19), an endemic, chitinous, soil- 
borne fungus that infects numerous plant 
species, including corn and soybeans (20). 
Seeds planted in soils heavily infested with 
R. solani typically have problems with stand 
establishment and early season growth. 
Damping-off, seedling blight, and brown- 
girdling root rot are diseases that are attrib- 
utable to R. solani infection. 

Homozygous progeny of 35s-chitinase 
transgenic tobacco plants were grown in the 
presence of R. solani to determine their 
susceptibility to fungal attack. Eighteen- 
day-old tobacco see- were transplanted 

Fig. 2. Resistance of 35s-chitinase tobacco plants to R. sofani. (A and B) Comparison of control plants 
(A) and 35s-chitinase transformants 373 (B) 18 days after growth in R. sofani-infested sand (1.0 ml 
per pint of soil) (19). (C) Root fresh weight of 23-day-old control and 35s-chitinax tobacco seedlings 
11 days after growth in soil containing increasing amounts (O,1, and 4 ml per pint of soil) of R. sofani 
inoculum. 548 (control), 0; 373, 0; 230, A; 238, .; 329, m. Two independent experiments were 
performed by use of ten replicates for each experimental condition. Bars indicate standard error of the 
determinations. 
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into R. solani-inoculated soil and grown for 
13 to 16 days (19). Under these conditions, 
an average of 53% of the plants without the 
35s-chitinase gene died. A lower percentage 
of seedling mortality, ranging from 22.7 to 

Fig. 3. Inhibition of fungal growth by bean 
chitinase. Samples added (40 )11 per well) to 
1-day-old R. sofani cultured on a potato dextrose 
agar, and incubated for 12 hours at m m  temper- 
ature are as follows: 1, buffer (50 rnM sodium 
phosphate, pH 7.0,O.l M NaCI) containing 100 
pg of BSA per milliliter; 2, buffer containing 100 
pg of bean chitinase per milliliter; 3, buffer con- 
taining 400 pg of bean chitinase per milliliter; 4, 
buffer containing 400 pg of BSA per milliliter; 5, 
butfcr containing 100 pg of boded bean chitinase 
per milliliter; 6, buffer containing 400 ~g of 
boded bean chitinase per milliliter. 

37.1% (21), was observed for plants con- 
taining the 35s-chitinase gene. Transgenic 
plants with higher amounts of the bean 
polypeptide showed greater resistance to the 
development of disease symptoms. When 
the 35s-chitinase plants were grown in the 
presence of a pathogen, Pythium aphanider- 
matum, that lacks a chitin-containing cell 
wall, no difference in survival was detected 
compared to control plants. Twenty days 
after transplanting into infested soil, seed- 
ling mortality ranged from 48.4 + 6.6 to 
63.7 2 1.9% for the 35s-chitinase plants 
and 56.5 + 2.6% for control transgenic 
plants (22). 

In certain plants, susceptibility to infec- 
tion by R. solani decreases with increasing 
age of the plant. For tobacco, lettuce, 
cauliflower, and bean (23), young seedlings 
are most severely affected. On more mature 
plants, stem and roots may be damaged, 
but the plant is still able to survive. Control 
tobacco plants grown in infested soil were 
noticeably stunted (Fig. 2A), while the 
35s-chitinase tobacco plants were larger 
and hardier (Fig. 2B) and showed minimal 
root damage. To quantitate the effect of R. 
solani infection on root development, con- 
ditions were chosen such that the plants 
did not die; instead, the extent of disease was 
monitored by the loss of root fresh weight 
(Fig. 2C). For the 35s-chitinase plants the 

Fig. 4. (A) Wild-type canola 
(left) and 35s-chi~ase canola 
(right) 14 days after growth in 
sand inoculated with R. solani 
(0.25 ml per pint) (19). (B) 
Rate of seedling m o d t y  of 
35S-Chi~a.W canola plants 
(closed circles) and wild-type 
canola plants (open circles). 
Data represent four indepen- 
dent experiments with 12 plants 
used in each. Error bars are 
standard errors of the determi- 
nations. 

loss in root k h  weight ranged from an 
average of 5 to 15%, compared to 46% for 
the control plants. 

The enhanced resistance of the 35s-chiti- 
nase plants is consistent with the inhibitory 
effect of bean chitinase on the growth of R. 
solani in vitro (Fig. 3). Inhibition was pro- 
portional to the concentration of added 
ihitinase. No inhibition was detected in the 
presence of either boiled enzyme or bovine 
serum albumin (BSA). The observed 
growth inhibitory effect may arise from en- 
zyme-catalyzed hydrolysis of newly formed 
chitin (24) and resultant disruption of the 
growing fungal-hyphal tips (25). It is not 
known whether modification of chitinase 
expression alone is sdcient  to provide pro- 
tection against a wide range of chitinous 
fungal pathogens. For example, tobacco 
plants containing transgenically increased 
amounts of a tobacco chitinase enzyme were 
only slightly more resistant than control 
tobacco plants to attack by the fungal patho- 
gen Cercospora nuotinae, indicating that fac- 
tors other than chitinase may be limiting in 
the defense against this pathogen (26). 

We have also introduced the chimeric 
35s-chitinase gene into canola, Brassua na- 
pus cv. Westar (27). In 1983 and 1984, yield 
losses of 36 and 23%, respectively, were 
attributed to root rot disea& caused by R. 
solani infection (28). Regenerated transgenic 
canola plants were assayed for bean chitinase 
expression by irnmundblot analysis and ho- 
mozygous progeny generated by self-fertili- 
zation of primary transformants. One trans- 
formant, which exhibited a 33-fold increase 
in chitinase ac t iv i~  in leaves and a twofold 
increase in roots over chitinase activity in 
untransformed tobacco plants, was analyzed 
and was found to be more resistant to root 
rot disease of R. solani. The 35s-chitinase 
plants showed more vigorous growth (Fig. 
4A) and a decrease in seedling mortality 
(Fig. 4B) during growth in inoculated soil. 

The extent of disease resistance observed 
in the 35S-chi~ase tobacco or canola var- 
ied with the amount of fungal inoculum 
used, a property characteristic of quantita- 
tive resistance. However, the delay in the 
appearance of symptoms as well as the lower 
severity of disease may enable young seed- 
lings to survive the critical period during 
stand establishment in the field when thev 
are most susceptible to attack by soil-borne 
pathogens. 
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Binding of ARF and p-COP to Golgi Membranes: 
Possible Regulation by a Trimeric G Protein 

The binding of cytosolic coat proteins to organelles may regulate membrane structure 
and traffic. Evidence is presented that a s m d  guanosine triphosphate (GTP)-binding 
protein, the adenosine diphosphate ribosylation factor (ARF), reversibly associates 
with the Golgi apparatus in an energy, GTP, and fungal metabolite brefe lh  A 
(BPA)-sensitive manner similar to, but distinguishable from, the 110-kilodalton 
cytosolic coat protein P-COP. Addition of Py subunits of G proteins inhibited the 
association of both ARF and @COP with Golgi membranes that occurred upon 
incubation with guanosine 5'-0-(3-thiotriphosphate) (GTP-y-S). Thus, heterotri- 
meric G proteins may function to regulate the assembly of coat proteins onto the Golgi 
membrane. 

C YTOSOLIC PROTEINS THAT BIND RE- lieved to exert their effects at the plasma 
versibly to membranes of the Golgi membrane, and the family of small GTP- 
complex have been identified (1, 2) binding proteins (the RAS superfamily). 

and shown to exist as a high molecular Several of the small GTP-binding proteins 
weight complex in the cytoso1;eferred to as have been implicated in the control of 
the coatomer (3). Cycling between the cyto- intracellular membrane traffic (9, 10). One 
sol and Golgi membrane of at least one of of these GTP-binding proteins, the adeno- 
these proteins, the 110-kD coat protein sine diphosphate ribosylation factor 
P-COP (4) ,  is affected by nonhydrolyzable (ARF), is associated with Golgi membrane 
analogs of GTP such as GTP-7-S and by and is also present in the cytosol (9). 
BFA (5-7). BFA inhibits the association of We used immunofluorescence microsco- 
cytosolic P-COP with Golgi membranes. py to study the effects of various agents 
Aluminum fluoride and GTP-7-S both pro- that influence energy status, disrupt the 
mote association of P-COP with Golgi Golgi complex, or alter the activity of G 
membranes, suggesting that one or more or-small GTP-binding protiins on 
GTP-binding proteins participate in initiat- the cellular localization of ARF and P-COP 
ing the association of P-COP with the mem- in normal rat kidney (NRK) cells. Immu- 
brane (6-8). nolabeling of ARF and P-COP in untreat- 

Two general classes of regulatory GTP- ed cells revealed a predominant Golgi-like 
binding proteins have been defined: the staining pattern, which was juxtanuclear 
signal transducing trimeric G proteins, be- and half-moon shaped (Fig. 1). A low 

amount of ARF staining was also observed 
throughout the cytosoi. Double labeling 

1. G. Donaldson, 1. Lippincott-Schwartz, R. D. Klaus- with antibodies to mannosidase I1 con- 
ner, Cell Biology and Metabolism Branch, National 
Institute of Child Health and Human Development, firmed the 
National Institutes of Health, Bethesda, MD 20892. and P-COP (1 1). Treatment of cells with 
R. A. Kahn, Laboratory of Biological Chemistry, Divi- 50 m~ 2-deoxyglucose and 0.05% N~ sion of Cancer Treatment, National Cancer Institute, 
National Institutes of Health, Bethesda, MD 20892. azide (DOGAz) for 10 min at 37°C to 
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