
thicknesses of volcanic deposits on Mars 
increase in younger eruptions. This trend 
could reflect changes instyles of eruption, 
changes in magma composition or viscosity, 
or other effects. In general, higher rates of 
eruption and magma> that are more mafic in 
composition produce longer, thinner flows. 
Thus, the relatively thin volcanic deposits in 
the Noachian and Early Hesperian epochs 
could reflect highly fluid lava flows that 
spread over large areas and initially ponded 
in low-lying regions within the heavily cra- 
tered terra&. From geochemical consider- 
ations, Burns and Fisher (19) suggested that 
ultramafic lava flows such as komatiites may 
be present on Mars. On Earth, komatiites 
are considered to have been extremely fluid 
and erupted rapidly at high temperatures, 
characteristics that are consistent with the 
thin lava flows suggested in early Mars' 
history. 

Comparison of magma production on 
Mars with Earth and Venus (Table 2) shows 
that extrusive (volcanic) production rates 
appear to be a function of planetary mass; 
Mars has the lowest rate (0.018 k ~ n ~ / ~ r ) .  
Differences in planetary interiors and styles 
of tectonism make selection of intrusive-to- 
extrusive ratios difficult. For simplicity of 
comparisons, the same 8.5:l  ratio derived 
from Earth and used for Mars was also 
applied to Venus. 

Results for total magma production rates 
following accretion and formation of a sta- 
ble crust (Table 2) also scale with planetary 
mass. However, even when scaled to Earth's 
mass and production rate, the magma pro- 
duction on Mars is significantly lower than 
for the other terrestrial planets. Compared 
to the Moon (normalized to Earth), lunar 
magma production appears anomously 
high, and rates for both extrusive and total 
magma production are greater than values 
for Mars, despite the much smaller size of 
the Moon. This comparison suggests that 
magma generation on the Moon may have 
been &eaed by processes or factors such as 
tidal stresses by Earth, similar to models 
applied to outer planet satellites that experi- 
ence volcanism (23). 
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Indole-3-Acetic Acid Biosynthesis in the Mutant 
Maize orange pericarp, a Tryptophan Auxotroph 

The maize mutant orange pericarp is a tryptophan auxotroph, which results from 
mutation of two unlinked loci of tryptophan synthase B. This mutant was used to  test 
the hypothesis that tryptophan is the precursor to  the plant hormone indole-3-acetic 
acid (IAA). Total IAA in aseptically grown mutant seedlings was 50 times greater than 
in normal seedlings. In  mutant seedlings grown on media containing stable isotope- 
labeled precursors, IAA was more enriched than was tryptophan. No incorporation of 
label into IAA &om tryptophan could be detected. These results establish that IAA can 
be produced de novo without tryptophan as an intermediate. 

T HE PLANT HORMONE AUXJN, OR IN- 

dole-3-acetic acid (IAA), has been 
studied for more than 100 years (l) ,  

yet it remains unclear how the principal 
endogenous auxin is synthesized. The amino 
acid tryptophan is considered to be a pre- 
cursor to IAA in plants because of structural 
similarities and because it appears to be the 
precursor in bacteria (2) and in plant cells 
transformed by Agrobacterium tumefaciens- 
( 3 ) .  Efforts to characterize the intermediates 
and enzymes involved in IAA biosynthesis 
have established that plants are competent to 
synthesize IAA from tryptophan by several 
different pathways (4). Nevertheless, micro- 
bial contamination, cellular compartmenta- 
tion, and possible multiple pools of precur- 
sors have combined to make the data 
ambiguous. 

Relatively little tryptophan is converted to 

A. D. Wright, M. B. Sampson, M. G. Neuffer, Depart- 
ment of Agronomy, University of Missouri, Columbia, 
MO 65211. 
L. Michalczuk and J. P. Slovin, Department of Botany, 
University of Maryland, College Park, MD 20742. 
J. D. Cohen, Plant Hormone Laboratory, Beltsville 
Agricultural Research Center, Agricultural Research Ser- 
vice, Department of Agriculture, Beltsville, MD 20705. 

IAA in sterile plant material (5 ) .  In an auxin 
bioassay with Avena coleoptiles, there is no 
growth response to tryptophan under sterile 
conditions, although anthranilic acid is ac- 
tive (6). In Lemnagibba, D-tryptophan is not 
converted to IAA, and the rate of conversion 
from L-tryptophan is far lower than would 
be expected for a direct precursor (7) .  

We have done a biochemical analysis of 
mutant plants that are incapable of making 
tryptophan to determine whether tryp- 
tophan is a precursor to IAA. One of the 
problems with producing plant amino acid 
auxotrophs is gene redundancy. A condi- 
tional tryptophan auxotroph of Arabidopsis 
thaliana, with a mutation in the tryptophan 
synthase (E.C. 4.2.1.20) B subunit (trpB) 
gene, contains a second gene encoding trpB 
activity (8). The expression of this second, 
nonmutated, gene would limit the utility of 
this mutant for studies of auxin metabolism, 
because the requirements for hormone pre- 
cursor are expected to be low relative to 
other uses for tryptophan. Maize also has 
two trpB genes (9). We describe here the 
analysis of IAA biosynthesis in a maize 
tryptophan auxotroph, orange pericarp (orp); 
this phenotype results from recessive muta- 

*To whom correspondence should be addressed. tion; in both unlinked trpB loci (1 0). 
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We determined the in vivo amounts and 
precursor labeling of both tryptophan and 
IAA in individual seedlings grown from 
embryos removed (using aseptic tech- 
nique) from maize kernels 30 days after 
pollination (11). Quantities of IAA and 
tryptophan in mutant and normal seedlings 
were determined by isotope dilution anal- 
ysis and quantitative mass spectrometry 
(12). If tryptophan were the precursor to 
IAA, IAA amounts in a tryptophan aux- 
otroph would be reduced; however, the 
amount of IAA (13) in 10-day mutant 
seedlings was approximately 50-fold great- 
er than in normal seedlings (Fig. 1A). 
Amounts of free tryptophan (14) were 
reduced in mutant seedlings (Fig. 1B). 
These results are consistent with synthesis 
of IAA from a heretofore uncharacterized 
branch point off the indole pathway (IS), 
before the synthesis of tryptophan. Addi- 

tion of tryptophan to the medium did not 
alter IAA amounts in the mutant or normal 
seedlings, indicating that tryptophan is not 
an immediate precursor to IAA (Fig. 1A). 

In auxotrophs, precursors before the 
block in the biochemical pathway build up 
and can drive branch reactions. These orp 
seedlings do accumulate precursors as 
shown by their blue fluorescence, charac- 
teristic of anthranilate glycoside, and the 
orp color is related to excess indole (10). 

High amounts of total IAA in mutant 
seedlings suggest that IAA biosynthesis 
diverges from the tryptophan pathway be- 
fore the indole-serine condensation step 
catalyzed by trpB. Additional evidence for 
such a branch point was obtained with the 
use of isotopic labeling. These experiments 
were designed to overcome problems 
caused by compartmentation of indole me- 
tabolism primarily in the plastids (7, 16). 
D,O, a "totally invasive label," was used to 

Fig. 1. Amounts of total (13) IAA (A) and free 
(14) tryptophan (6 )  in orp and normal 10-day 
maize seedlings as determined by quantitative 
GC-MS analysis. (A) Lane 1, orp seedlings; lane 2, 
normal seedlings; lane 3, orp seedlings; and lane 4, 
normal seedlings. Seedlings in lanes 3 and 4 were 
grown with exogenous tryptophan. (B) Lane 1, 
orp seedlings; and lane 2, normal seedlings. Val- 
ues are the average * SE of three (B) or four (A) 
determinations. 

'""I 

Table 1. Incorporation of deuterium into stable 
ring positions of tryptophan (Trp) and IAA in 
normal and orp seedlings. Embryos were grown 
for 6 days on water media, then 8 days on 30% 
D,O. Indole formed after tryptophanase 
treatment of uyptophan or methylated IAA 
were analyzed by GC-MS. Data are from 
individual seedlings and the values presented are 
typical (20). Values reported are increased 
enrichment due to the D,O treatment (21) and 
are expressed as percent relative to the total 
abundance of ions at m/z 117 to 123 or m/z 
130 to 136. Fig. 2. Average spectra and total ion chromatograms (TIC; the sum of monitored ions) of tryptophan 

and IAA from 10-day-old seedlings. In each panel the top set of data are for normal seedlings and the 
bottom set are for the mutant seedlings. Data presented in (A) and (6 )  are from seedlings grown on 
agar containing 30 pM ['5~]anthranilic acid. For tryptophan analysis (A), ions at the quinolinium ion 
region (m/z 130 to 135) and at the molecular ion region for the N-acetyl methyl ester derivative (m/z 
260 to 265) were monitored, and for IAA methyl ester (B) the ions at m/z 130 to 135 and 189 to 194 
were monitored. Bar over peak on TIC indicates region of averaged spectra shown in frame above. 
Incorporation of "N from anthranilic acid into tryptophan results in an increase at m/z 131 and 261 
and for IAA an increase at m/z 131 and 190. In (C) and (D) are spectra and TIC of methyl IAA isolated 
from normal and orp seedlings after 10 days growth on 166 LM L-[ '~N] or ~ - [ ~ ~ ~ ] t r y ~ t o ~ h a n .  
Although use of L-[2H5]tryptophan (C) gives greater sensitivity for analysis, confirmation was ob- 
tained with the use of ~ - [ ' ~ N ] t r y ~ t o ~ h a n  (D). Each experiment was repeated four to six times and the 
data presented are individual GC-MS analyses of representative samples. 

T ~ P  IAA [2H]IAA 
Plant m/z(%) m/z(%) - 

118-123 131-136 

Normal 
1 34.8 26.7 0.77 
2 21.1 10.4 0.49 

O 'P  
3 16.0 27.4 1.71 
4 18.4 24.0 1.30 
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label early indolic precursors for which only a minor contributor to IAA biosyn- charge ( m / z )  130 to 136 and m / z  189 to 195. 
13. Free, esterified, and amide IAA were determined as enol-diol equilibration allows exchange, thesis (7). Failure of either L-['H,] or described ,J, ,,, Cohen, B, G. Baldi, J ,  P, Slovin, 

that is, phosphoenol pyruvate and erthy- ~ - [ ' ~ N ] t r y ~ t o ~ h a n  to significantly label Plant Physiol. 80, 14 (1986); K. Bialek and J. D. 

rose-4-phosphate before they enter into the IAA in normal or orp maize suggests a Cohen> {bid. 90, 398 (198911. Conjugated IAA 
accounted for nearly 99% of the total IAA in 

shikimic acid pathway (17). As a general similar situation exists in maize; therefore, mutant seedlines. and most was in the form of ~~~ 

0 ,  

label, D 2 0  &o has' the idvantage that the nontryptophan pathway is the primary amide conjugates. 

specific knowledge of the biosynthetic route of IAA biosynthesis. 14. Tryptophan was determined without hydrolysis of 
protein-bound tryptophan, and data reflect the free 

pathway is not required. amino acid. In a young seedling, it would be 
Both mutant and normal seedlings incor- expected that some' freetryptophan would result 
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