Similarities in Amino Acid Sequences of Drosophila eag and Cyclic Nucleotide-Gated Channels

The Drosophila ether à go-go (eag) gene has been reported to be similar to the Drosophila Shaker (Sh) family of structural genes encoding voltage-gated potassium ion (K⁺) channels (1). We have now found that the eag polypeptide (Eag) is more closely related to polypeptides of cyclic nucleotide-gated cation channels than to those of voltagegated K⁺ channels. For the channel-forming regions of the protein sequences (S1 through S6), we found 47 amino acids that were identical between Shal and eag, 42 between Shal and a guanosine 3', 5'-monophosphate (cGMP)-gated channel, and 62 between eag and a cGMP-gated channel. .

The similarity between Eag and the cyclic nucleotide-gated channels is greatest in S2, S5, S6, and COOH-terminal segments of the sequences. The only regions in which Eag is substantially more similar to Sh voltage-gated K⁺ channels than to cyclic nucleotide-gated channels are the putative poreforming hairpin (2), P (3) [which was previously called H5 (4) or SS1-SS2 (5)], S4, and the segment linking S4 to S5. This is noteworthy because Eag may combine with other types of K⁺ channel subunits to produce K⁺ selective channels (6), whereas cyclic nucleotide-gated channels are relatively nonselective among cations (7).

Fig. 1. Alignment of portions of

and cGMP-gated (7) channels and

to the two cGMP binding domains

of cGMP-dependent protein kinase

(cGK1 and cGK2) (8). Putative

cGMP binding domains are under-

lined. Exact matches are indicated

by bold letters and conservative

substitutions by capital letters. The

alignment was influenced by homologous sequences from many ad-

ditional voltage-gated K^+ , Na^+ , and Ca^{2+} channels and from other

cyclic nucleotide-gated channels. The Shal sequence is used to repre-

sent the K⁺ channels because the

intervening regions between its

transmembrane segments are clos-

est in length to those of the eag sequence. Initial alignments were obtained by six computer programs

(10). When ambiguous alignments

were obtained (for example, S1), the alignment was adjusted manu-

ally to optimize alignment of the hydrophilic residues in the trans-membrane segments. The segments

of the cyclic nucleotide-gated chan-

nels aligned with P and S6 of K⁺ channels differ from those in a pre-

vious alignment (11).

segments

and

Eag to the Drosophila Shal K⁺

transmembrane

The similarity between Eag and cyclic nucleotide-gated channels extends beyond S6 into the COOH-terminal region, including the putative cyclic nucleotide binding domain. This domain is homologous to the cGMP binding region of cGMP-activated kinases (7, 8). The COOH-terminal cytoplasmic domains of voltage-gated K⁺ channels show no amino acid similarity with Eag or with cyclic nucleotide-gated channels. Mutations in the eag gene alter identified K⁺ channels gated by voltage or by Ca²⁺ in Drosophila muscles (6). These effects may indicate formation of heteromeric channels containing subunits encoded by eag by other K^+ channel genes (6). If so, the similarities between Eag and nucleotide-gated channels raise the possibility that this type of combinatorial assembly could produce voltageand Ca²⁺-gated K⁺ channels that are modulated by second messengers such as cGMP and adenosine 3',5'-monophosphate.

> H. ROBERT GUY STEWART R. DURELL Laboratory of Mathematical Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 JEFFREY WARMKE RACHEL DRYSDALE BARRY GANETZKY Laboratory of Genetics, University of Wisconsin, Madison, WI 53706

> > REFERENCES

- 1. J. Warmke, R. Drysdale, B. Ganetzky, Science 252, 1560 (1991)
- 2. G. Yellen, M. E. Jurman, T. Abramson, R. MacKinnon, ibid. 251, 939 (1991); H. A. Hartmann et al., ibid., p. 942; A. J. Yool and T. Schwarz, Nature 349, 700 (1991); M. Noda *et al.*, *FEBS Lett.* **259**, 213 (1989); M. Pusch, M. Noda, F. Conti, *Biophys. J.* 59, 25a (1991); H. R. Guy and P. Seetharamulu, Proc. Natl. Acad. Sci. U.S.A. 83, 508 (1986).
- C. F. Stevens, *Nature* **349**, 657 (1991).
 B. L. Tempel, D. M. Papazian, T. L. Schwarz, Y. N. Jan, L. Y. Jan, *Science* **237**, 770 (1987). 4.
- 5. H. R. Guy, in Monovalent Cations in Biological Systems, C. A. Pasternak, Ed. (CRC Press, Boca Raton, FL, 1990), p. 31. Y. Zhong and C.-F. Wu, *Science* **252**, 1562 (1991). U. B. Kaupp *et al.*, *Nature* **342**, 762 (1989).

- K. Takio et al., Biochemistry 23, 4207 (1984).
- A. Wei, M. Covarrubias, A. Butler, K. Baker, M. Pak, L. Salkoff, Science 248, 599 (1990).
- MACAW: G. D. Schuler, S. F. Altschul, D. J. Lipman, Proteins 9, 180 (1991); BLASTP: S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, J. Mol. Biol. 215, 403 (1990); MSA: D. J. Lipman, S. F. Altschul, J. Kececioglu, Proc. Natl. Acad. Sci. U.S.A. 86, 4412 (1989); PROTPARS: J. Felsenstein, PHYLIP 3.3 Manual (Univ. of California Herbarium, Berkeley, CA, 1990); IDEAS-(SEQHP): M. Kanehisa, Laboratory of Mathematical Biology, National Cancer Institute, Bethesda, MD; GENALIGN: E. Sobel and H. M. Martinez, Nucl. Acids Res. 14, 363 (1986). 11. L. Y. Jan and Y. N. Jan, Nature 345, 672 (1990).

9 August 1991; accepted 13 September 1991

SCIENCE, VOL. 254

Shal	NPHtSTsalvFYyVTgffIaVSVmanVveTVPcghrpgra	216
eag		
CGMP	pPHillhYcaFkaIwd-wVILcLTfytAimVPynv DPsgNTyYnwlFcITl-pVMyNwTmilArAc	186
	۱S1۱	
Shal	Gtlpcger Y kiVffcL D TacvM IF taEyL LR1F aA P -	252
eag	AFknktSEdVsL-LvVDSIvDVIFfIDIVLnfHTtFVGPG	
CGMP	-FdelgSDYLeywLafDyLsDVVYlLDMfVRtRTgYLegG	
	۱S2۱	
Shal	dRcKFVRSvmsIIDVVAIMPYyIglGit-DN	282
eag	geVvsDpKVIRmNYLKSw-FIIDLLScLPYDVfnAfdrDE	336
CGMP	llVkeErKLId-KYksTfqFkLDVLSIIPtDLlyi	259
	آS3ا	
Shal	DdVSGaFvTLRVfRVfRIfKfsrhsQgLRiLgyTLkScAS	322
eaq	DgIGS1FSALKVvRLLRLGRVVRkLdRyLeygAA	370
CGMP	-kfGwnYPeIRLnRLLRISRMfeffQRtetRTnyPnif	296
	S4I	
Shal	eLGfLVfsLaMaIiifAtVmFyaeKN	348
eag		429
CGMP	rISnLVmYIIIIIHWnACVyFSISKa-igfGNdTwvy-PD	334
	۱S5۱	
Shal	-VNGtNFtSIpAAfwYTIVTMTTLGYGDMvPETiAg	383
eag	1VNGPSrkSMYVTALYFTMtcMTSVGFGNVAAETDNE	466
CGMP	-VNdPDFgrLarkYVySLYwStLTLTTIG-etpPPvrDSE	372
	۱P۱	
Shal	KIvggvcsLsGVLViAlpVpvIvSnfSRIy 413 ->	490
eag	KVFtIcmmIIAaLLYATIfGHVtTIIqQMtSAtAkYHdmL	506
CGMP	yf F vVadf LIGVL IF ATIVG NIgSMISnMnAArAeFQarI	412
	lS6l	
eag	NnVREFMklHEVPKaLseRVMdyvvstWAmtKgLDtekVL	546
CGMP	DaIKQYMhfRNVSKdMekRVIkwfdylWTnkKtVDereVL	452
		500
eag cGMP	NccPkdMKADIcVHLNrkvfdehptFrlasdGcLraLaMh KylPdkLRAEIaINVHldtlkkvriFadceaGlLveLvLk	586 492
CGMF	Ny IFUNDADIA INVITUE INN'I IFUUCEA BIAVEAVDA	492
eag	fmmshsAPGDlLyHtGEsiDsLcfIvtGsLEVI-QDDeV-	624
CGMP	lqpqv YSPGDYI cKk GDIG reMYIIkEGKLaVV-aDDgIt	531
CGK1	YGkdscIiKeGDVGslVYVMeDGKVEVtk	151
cGK2	YenGEYIiRqGarGDtfFIIskGKVNVtrEDspne	275
	•	
eag	-valLGKGDVFGD-qfwKdS-AvgQsAANVRALtY	656
CGMP CGK1	QfVVLSdGsyFGEISILniKgSkAgNRRTANIKSIGY	568 185
CGK1 CGK2		309
50110	Putative cGMP binding domain	
020	cDLhAIkRDkLLEvLdfYS 675 -> 1	174
eag cGMP		690
cGK1		670
cGK2		670
730		