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Cloning and Expression of a Cocaine-Sensitive 
Dopamine Transporter Complementary DNA 

A rat dopamine (DA) transporter complementary DNA has been isolated with 
combined complementary DNA homology and expression approaches. The DA 
transporter is a 619-amino acid protein with 12 hydrophobic putative membrane- 
spanning domains and homology to the norepinephrine and y-aminobutyric acid 
transporters. The expressed complementary DNA confers transport of [3H]DA in 
Xenqpus oocytes and in COS cells. Binding of the cocaine analog [3H]CFT { [ 3 H ] 2 ~ -  
carbomethoxy-3P-(4-fluoropheny1)tropane) to transfected COS cell membranes yields 
a pharmacological profile similar to that in striatal membranes. 

OPAMIhTE TRANSPORTERS TERMI- 

nate dopaminergic neurotransmis- 
sion by Na+- and C1--dependent 

reaccumulation of DA into presynaptic neu- 
rons (1). Cocaine and related drugs bind to 
these transporters in a fashion that correlates 
well with their behavioral reinforcing and 
psychomotor stimulant properties; these 
transporters are thus the principal brain 
"cocaine receptors" related to drug abuse 

( 2 ) .  
To find cDNAs that encode members of 

this neurotransmitter transporter family and 
that are expressed in brain regions rich in 
dopaminergic neurons, 500,000 plaques of 
a size-selected h-Zap I1 rat ventral midbrain 
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cDNA library were screened with a radiola- 
beled oligonucleotide complementary to 
conserved segments of the norepinephrine 
(NE) and y-aminobutyric acid (GABA) 
transporters and products of polymerase 
chain reaction (PCR) amplification of brain 
cDNA with transporter-specific oligonucle- 
otides (3-5). Messenger RNA transcribed 
from one of the 27 hybridization-positive 
clones, DATl, conferred consistent cocaine- 
blockable accumulation of [3H]DA in the 
Xenoplrs oocyte uptake assay that was more 
than ten times background levels (6, 7). 

pDATl contains a 3.4-kb cDNA insert 
with a 1857-bp open reading frame. Assign- 
ment of the first ATG as the translation 
initiation site, on the basis of resemblances 
to consensus sequences for translational ini- 
tiation (4, results in a protein of 619 amino 
acids with a nonglycosylated molecular 
weight of 69,000 (Fig. 1). Hydrophobicity 
analysis reveals 12 hydrophobic segments 
long enough to form transmembrane do- 
mains. The predicted DATl protein lacks an 
identifiable signal sequence. It displays four 
potential sites for N-linked glycosylation 
(Fig. 1). This sequence shows 67% amino 
acid identity and 81% similarity with the 
human NE transporter (3 ) ,  45% identity 
and 67% similarity with the rat GABA 
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transporter (4) ,  and no substantial homol- Northern analysis of mRNA extracted kb. This mRNA is not found in lung, cere- 
ogy with other protein database sequences. from midbrain and from brainstem prepara- bral cortex, or cerebellum. In situ hybridiza- 
Residues forming putative transmembrane tions that contain this region reveals a single tion reveals hybridization overlying neurons 
domains are especially well conserved. band with a motility corresponding to 3.7 of the substantia nigra pars compacta and 

ventral tegmental area. 
In Xenopus oocytes injected with mRNA 

transcribed from pDAT1, [ 3 H ] ~ A  is taken 
up with high affinity and Na+, time, and 
temperature dependence (Fig. 2A) (1, 3, 4). 

E Conversely, [3H]DA is not accumulated in 
oocytes injected with an mRNA encoding 
the GABA transporter. The relative poten- 
cies of cocaine-like drugs in inhibiting 
[3H]DA uptake in oocytes expressing 
DATl fit well with their relative potencies at 
the DA transporter in brain synaptosomes 
(Fig. 2B) (1, 8). The more active minus 
isomer of cocaine is almost two orders of 
magnitude more potent than the plus iso- 
mer. Mazindol displays a potency higher 
than that of cocaine, and agents primarily 
active at NE and serotonin (5HT) trans- 

G porters, desmethylimipramine (DMI) and 
G S 

v ~ L n L ~ ~ E  g~ P citalopram, show negligible potency (1). 
d 

E 3 p @ v ~ ~ s E x ~ ~ ~ \ q \ q e s h n p  sc,xs xs ~ L L w H R ~ ~  F Q ~ ~ d G R D ~ ~  Q~ z D % ~ ~ i A y A L i <  E Oocytes injected with mRNA transcribed 
from pDATl do not accumulate 

Fig. 1. Schematic representation of thc dopamine transporter showing proposed orientation in the plasma [3~]choline, &tamate, GABA, glycine, or 
membrane, amino acids conserved in GABA, DA, and NE transporters (dark letters), amino adds conserved adenosine. Inhibitors or competitors for in DA and NE transporters (italic letters), or amino acids found only in DATl (open letters) (14). 

transporters, hemicholiniurn-3, dihydro- 
kainate, nipecotate, dipyridamole, glycine, 

-0- (-1 Cocalne -+- Mszlndol - (+) Cocslne -A- Nomifensin 
and taurine fail to affect [3H]DA accumula- 

0'25- A - DATI -C DMI x Cltalopram tion into DATl expressing oocytes. 
+ OABAT - N r h  125- B COS cells transfected with DATl cDNA - 4 0 c  subcloned into the eukaryotic expression 

vector pcDNA I (pcDNADAT1) display 
0.15 - avid Na'-, CI--, and temperature-depen- a 

d dent uptake of [3H]DA. Transfected cells 
bind [3H]CFT with a dissociation constant 

d (KD) of 46.5 + 7.8 in tris buffers (9) .  These 
0.05 - data fit a single site (Fig. 2), but binding in 

sucrose-phosphate buffers can reveal two 

0.00 o sites (affinity estimates, 0.3 and 14 nM). 
o 15 30 45 60 75 go 9 8 7 6 5 Binding can be displaced by the cocaine 

Tlme (mln) -log I D w  (M)l stereoisomers GBR 12909, mazindol, and 
CFT with affinities that correlate well (P < 
0.0001) with their affinities for striatal do- 
pamine transporters (Fig. 2D) (9, 11, 12). 

Thus, pDATl can be expressed to yield 
properties anticipated of brain DA trans- 
porter (1 ). 
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impetus for understanding more about the 
structure, cellular physiology, and regulation of 
the transporter. 

Degenerate oligonucleotides corresponding 
to regons of high sequence identity between 
the NE (2) and y-amino-butync acid (GABA) 
(3) transporters were used in polymerase chain 
reactions (PCR) with mRNA from midbrain 
(4). One PCR product, KW27, hybridized a 
3.6-kb mRNA selectively expressed in the mid- 
brain (5 ) .  A full-length clone (pDAT) was 
identified by high-stringency screening of mid- 
brain and substantia nigra cDNA libraries with 
the KW27 probe (6). The deduced amino acid 
sequence (Fig. 1) reveals 12 hydrophobic seg- 
ments and predicts the same toplogic model 
as that suggested for the GABA and NE trans- 
porters with 12 transmembrane domains and 
both NH,- and COOH-termini located cyto- 
plasmically. The degree of sequence identity 
between pDAT and the NE and GABA trans- 
porters is 64 and 40%, respectively. One po- 

Cloning and Expression of a Cocaine-Sensitive Rat tentid! s i @ a t  a~ence is the presence of 
four predicted glycosylation sites in pDAT 

Dopamine Transporter (Fig. I), while the other two transporters have 

The action of dopamine and other monoamine neurotransmitters at synapses is 
terminated predominantly by high-affinity reuptake into presynaptic terminals by 
specific sodium-dependent neurotransmitter transport proteins. A complementary 
DNA encoding a rat doparnine transporter has been isolated that exhibits high 
sequence similarity with the previously cloned norepinephrine and 7-aminobutyric 
acid transporters. Transient expression of the complementary DNA in HeLa cells 
confirms the cocaine sensitivity of this transporter. 

R EUPTAKE SYSTEMS FOR THE RIO- however, have been attributed to inhibition of 
genic amines have a central role in DA reuptake in the nucleus accurnbens and 
determining net synaptic activity related targets of the mesolimbic DA system 

and are the initial sites of action for a wide ( 1 ) .  The sigdcance of the DA transporter to 
range of drugs with both therapeutic and the addictive properties of cocaine provides 
abuse potential. Psvchomotor stimulants 

only three sites. 
In situ hybridization studies provide fur- 

ther evidence that pDAT encodes a DA 
transporter. Brain regions known to contain 
dopaminergic neurons show specific hybrid- 
ization to a KW27 cRNA probe and include 
the substantia nigra and ventral tegmental 
area, with less intense signals apparent in the 
periphery of the olfactory bulb and in dis- 
crete regions of the hypothalamus (5, 7). In 
order to confirm that pDAT represents the 
actual DA transporter and not a related gene 
product expressed in dopaminergic neurons, 
the transporter was expressed in HeLa cells 
with a T7-vaccinia virus transient expression 
system (8). Transfected HeLa cells demon- 

such as cocaine and amphetamines act di- e .  7 

rectly on neurotransmitter transporters to - . . . . 
..................... - - - . . . . . . . . . i ~ ~ $ J $ ~ ~ $ $ $ ? ~ ~ ~ $ $ ~ ~ ~ ~ ~  

inhibit the reuptake of dopamine (DA), GABAT ....... . ............................ ...@ N G S ~ ~ I S T E V S E A P V A N D K P K T  
I I1 I11 seroton~n ( ~ H T ) ,  and norepinephrine . b , i 

(NE). The reinforcing effects of cocaine, DAT 
NET 
GABAT 

Iv 
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Fig. 1. Alignment of protein sequences of the rat 
DA transporter with the human NE (2) and 
GABA (3) transporters. Boxes, regions of identi- 
y; brackets, transmembrane helices; *, glycosyla- 
tion sites on the putative extracellular loop. Two 
potential sites for phosphorylation by protein 
lunase C in the NH,-terminal domain and one 
potential site for phosphorylation by either pro- 
tein kinase C or Ca2+-calmodulin-dependent lu- 
nase I1 in the COOH-terminal domain are indi- 
cated by solid dots. 
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