
Even after 5 days in culture, no tubules were 
formed and only rudimentary branching of the 
ureter bud was seen. The corresponding sense 
and non-sense phosphothionate oligonucleo- 
tides did not affect NGFR expression, or 
growth and differentiation of the kidneys. Re- 
moval of the anti-sense oligonucleotides after 2 
days in the cultures restored normal nephric 
differentiation (19). Thus, depletion of NGFR 
specifically perturbed epithelial differentiation 
of the nephrons. Although the ureter bud 
did not express NGFR (Fig. l), its branch- 
ing was inhibited by anti-sense oligonucle- 
otides, but not by control oligonucleotides. 
Therefore, inhibition of NGFR expression 
in nephrogenic tissue also perturbs epithe- 
lio-mesenchymal tissue interactions that 
govern ureter bud branching. 

The results show that NGFR expression is 
required for the formation of epithelial kid- 
ney tubules. NGFR is widely distributed in 
embryonic tissues derived from all germ 
layers (7, 8) ,  so signal transduction by 
NGFR may be important in differentiation 
of a variety of organs, as well as of the 
nervous system. 
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Table 1. Metabolic and hormone data. All units expressed in mean i- SEM (n = 7) 

Item 15 hours 40 hours 64 hours 

Body mass (kg) 
Liver volume (liter) 
Glucose (mmol/liter) 
Insdn  (kU/ml) 
Glucagon (pglml) 
Cortisol ( & d l )  
Urinary nitrogen (mmo1/24 hours) 
RQ 
Glycogen (kmol/ml) 

* p  < 0.05 compared with t = 15 hours by means of analysis of variance in conjunction with the Student-Newman- 
Kuel test. **p < 0.05 compared with t = 0.5 hours by means of paired t test. tMeasured at t = 0.5 
hours. $Measured at t = 67.5 hours. 

change in liver glycogen concentration for a 
given time interval by the volume of the 
liver. We obtained the net rate of whole 
body gluconeogenesis by subtracting the 
glycogenolytic rate from the rate of whole 
body glucose production measured by 
[6-3H]glucose turnover. 

seven healthy volunteers (six male and 
one female, aged 20 to 26 years; body mass 
index ? SEM; 22.7 ? 0.5 kg/m2) were fed 
a standard high ~arbohydrat~diet  (40 to 45 
kcallkg per day; 60% carbohydrate, 20% 
protein, 20% fat) for 3 days before the fast. 
At 5: 00 p.m. [time (t) = 01 on day 3, they 
ingested a liquid meal consisting of 650 kcal 
(60% carbohydrate, 20% protein, 20% fat) 
in less than 5 min. The subjects then fasted 
for 68 hours, during which period they were 
given unlimited access to drinking water. 
The 13C NMR measurements of glycogen 
concentration in the liver were performed 
after4,7, 10, 13, 16,22,28,40,46, 52,and 
64 hours (4). The volume of the liver was 
measured with magnetic resonance imaging 
on all subjects after 0.5 and 67.5 hours (5) .  
Rates of total glucose production were as- 
sessed after administration of a primed con- 
tinuous infusion of [6-3H]glucose at 22,43, 
and 67 hours of fasting (6) .  After the 68 
hours of fasting, subjects were given unlim- 
ited access to food (mean intake was -2000 
kcal; 47% carbohydrate, 23% protein, 30% 
fat). We obtained the final measurement of 
glycogen concentration in the liver 3 hours 
later to estimate rates of liver glycogen re- 

pletion. During the fast, the plasma glucose 
concentration as well as the respiratory quo- 
tient (RQ) decreased, reflecting an increase 
in fat use (Table 1). Liver volume also 
decreased by 23 ? 4% (? SEM) after 67 
hours of fasting. 

The 13C NMR sDectra of the C1 position 
of liver glycogen obtained from one of the 
subjects during the fast are shown in Fig. 1. 
The SD in the 13C NMR glycogen concen- 

- - 

tration measurement due to spectral noise 
was 13 pmol/ml (4). (Throughout this pa- 
per, the glycogen concentration is given in 
micromoles of glycogen per milliliter of liver 
volume.) Four hours after the subjects in- 
gested the standard meal (t = 4), the average 
concentration of glycogen in the liver was 
396 ? 29 pmol/ml, which is comparable to 
values obtained by analyses of liver biopsies 
(7). During the fast, liver glycogen concen- 
tration decreased at an almost linear rate for 
the first 22 hours (Fig. 2). Subsequently the 
rate of glycogenolysis declined, and average 
glycogen concentrations were 66 ? 9 ~ m o l /  
ml after 40 hours and 42 ? 9 pmollml after 
64 hours. After 68 hours, subjects were 
refed, and the liver glycogen increased over 
the next 3 hours in each subject to a mean 
value of 188 ? 19 p,mol/ml, yielding an 
approximate mean net glycogenic rate 070.8 
? 0.1 p,mol/ml per minute (range 0.4 to 1.2 
pmol/ml per minute or 14 ? 2 p,mol/kg per 
minute). (Throughout this paper, rates giv- 
en in micromoles per kilogram refer to 
kilograms of body mass.) 

li_0 . 160 ' do . 
Chemical shifl (ppm) 

Fig. 1. Staggered plot of the 
13C NMR spectra of the C1 
position of hepatic glycogen 
obtained at the indicated 
hours from one of the sub- 
jects during 64 hours of fast- 
ing. 

The mean rate of glycogenolysis was rel- 
atively constant during the first 22 hours of 
fasting in the present study (4.0 * 1.2 
pmollkg per minute or 0.19 * 0.06 pmoll 
ml per minute from 4 to 13 hours and 4.3 ? 

0.6 pmollkg per minute or 0.20 ? 0.02 
p,mol/ml per minute from 4 to 22 hours) 
(Table 2).  At t = 22 hours, we calculated 
that the rate of net hepatic glycogenolysis 
accounted for only 36% (range 19 to 54%) 
of total glucose production ( 8 ) .  Assuming 
the same rate of overall glucose production 
during the initial 4 to 13 hours of the fast, 
the fractional contribution of glycogenolysis 
to overall glucose production was the same 
even for this earlier interval. As the fast 
progressed, the rate of glycogenolysis de- 
creased, and after 42 hours gluconeogenesis 
accounted for essentially all of the glucose 
production. The initial glycogenolytic rate 
was somewhat lower than the rate of 0.30 
pmol/ml per minute determined in repeti- 
tive liver biopsies (7). In that study, the 
glycogenolytic rate measurements were per- 
formed only during the first 4 hours after an 
overnight fast and may therefore differ from 
our measurements, which were performed 
every 3 to 6 hours during the first 24 hours 
of fasting. Furthermore, release of epineph- 
rine during biopsy measurements might in- 
crease the glycogenolytic rate. 

The contribution of gluconeogenesis to 
total net glucose production that we ob- 
served in the early phase of a fast are in 
contrast to those from earlier studies in 
which gluconeogenesis was found to con- 
tribute less than 35% of glucose production 
at 12 to 14 hours of fasting (7, 9, 10). It is 
possible that the relatively small size of the 
evening meal (650 kcal) before the fast in 
our study contributed to the higher gluco- 
neogenic estimate in our studies. To the 
extent that glucose cycling occurs in the liver 
and kidney, our measurements may overes- 
timate rates of net hepatic and renal glucose 
production, which would cause us to over- 
estimate the fractional contribution of glu- 
coneogenesis to total net glucose produc- 
tion. Studies in conscious dogs found rates 
of glucose appearance measured with 
[3-3H]glucose that were 30% higher than 
rates of net hepatic glucose production mea- 
sured with arteriovenous-difference tech- 
niques (11). Even if we adjusted our calcu- 
lated rates of glucose appearance by this 
amount, gluconeogenesis would still ac- 
count for 50% of overall glucose production 
during the initial 4 to 22 hours (and 4 to 13 
hours) of fasting. However, our rates of 
glucose production (12.2 ? 0.9 pmol/kg 
per minute) agree well with rates of splanch- 
nic glucose production measured with 
arteriovenous techniques (13.3 ? 0.2 pmol/ 
kg per minute) (9), suggesting insignificant 
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Table 2. Mean rates of total glucose production, net hepatic glycogenolysis, and gluconeogenesis 
All units expressed in mean t SEM (n = 7). Ranges shown in parentheses. 

Item 0 to 22 hours 22 to 46 hours 46 to 64 hours 

Glucose production 12.2 2 0.9 8.8 zk 0.5* 8.7 0.4* 
(pno1,kg per minute) (8.6 to 16.1) (6.6 to 10.5) (6.9 to 10.4) 

Hepatic glycogenolysis 4.3 c 0.6 1.7 + 0.5* 0.3 2 0.6* 
(pmo1,kg per minute) (2.2 to 7.5) (0.4 to 4.3) (0.0 to 0.5) 

Gluconeogenesis 7.9 r 1.0 7.1 F 0.5 8.3 r 0.5 
(~.~mol/kg per minute) (5.0 to 12.7) (5.0 to 8.5) (6.4 to 10.4) 

Glucose production (96) 64 t 5 82 2 5* 96 -+ 1* 
from gluconeogenesis (46 to 81) (54 to 95) (94 to 100) 

X p  < 0.05 compared with 0 to 22 hours by means of analysis of variance. 

glucose production by the kidney and min- 
imal loss of the tritium label in [6-3H]glu- 
cose because of recycling. 

In the repetitive biopsy study, glycogen- 
olysis was calculated to account for between 
57 and 66% of assumed total glucose pro- 
duction (7); however, liver volume was not 
measured. If the earlier results are recalcu- 
lated with the average liver volume mea- 
sured initially in this study, which was 20% 
smaller than the assumed liver volume (1.8 
liters) (7), the glycogenolytic contribution 
to glucose production in the whole body is 
47  to 56%, which is similar to our findings. 

A study of the uptake of gluconeogenic 
substrates across the splanchnic bed indicat- 
ed that gluconeogenesis contributed only 
20% of total glucose production during the 
first 12 to 14 hours of fasting (9). This 
estimate may have been low for several 
reasons: (i) Release of gluconeogenic sub- 
strate from the gut during a fast would not 
be detected by the splanchnic catheterization 
technique. However, studies in fasting dogs 
(12) and humans (13) in which portal vein 
blood was obtained suggest that there is 
relatively little gluconeogenic substrate re- 
lease from the gut. (ii) Glucose production 
from renal gluconeogenesis (14) would not 
be detected by the splanchnic catheterization 
technique, resulting in an underestimation 

of the rate of total gluconeogenesis. How- 
ever, renal contribution to wholebody glu- 
cose production in humans is minor in the 
overnight fasted state and only becomes 
important during prolonged fasting (15). 
(iii) The splanchnic catheterization method 
does not take into consideration intrahepatic 
proteolysis, which might contribute sub- 
strates to gluconeogenesis. The 23% de- 
crease in liver volume that we observed 
during 64 hours of fasting (Table 1) might 
reflect loss in volume due to intrahepatic 
proteolysis as well as glycogenolysis. 

The rate of gluconeogenesis has also been 
quantified (10) in humans with an isotopic 
method (2) in which researchers infused 
[2-14C]acetate into subjects to monitor glu- 
coneogenesis and allow calculation of Krebs 
cycle carbon exchange. They calculated that 
gluconeogenesis accounted for only 28 2 
2% of total glucose production after an 
overnight fast (10). However, labeled ace- 
tate has been shown to be an unsuitable 
substrate for quantitation of gluconeogene- 
sis in vivo because acetate is metabolized in 
extrahepatic tissues (2). Also, the method 
does not take into consideration dilution of 
label by intrahepatic proteolysis, and both 
these factors could result in an underestima- 
tion of the rate of gluconeogenesis. 

We found that, in contrast to other stud- 

Faning (hours) Meal 

Fig. 2. The 13C NMR mea- 
surements of liver glycogen 
concentration in seven sub- 
jects during 64 hours of fast- 
ing and 3 hours after refeed- 
ing with a standard meal ( t  
= 68 hours). 

ies, gluconeogenesis contributed substan- 
tially to overall glucose production in hu- 
mans even during the initial 22 hours of a 
fast. During refeeding after an overnight 
fast, approximately half of the newly synthe- 
sized liver glycogen is replenished by gluco- 
neogenesis (16). Together, these results sug- 
gest that hepatic gluconeogenesis is always 
operating at an appreciable rate in humans. 
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Cloning and Expression of a Cocaine-Sensitive 
Dopamine Transporter Complementary DNA 

A rat dopamine (DA) transporter complementary DNA has been isolated with 
combined complementary DNA homology and expression approaches. The DA 
transporter is a 619-amino acid protein with 12 hydrophobic putative membrane- 
spanning domains and homology to the norepinephrine and y-aminobutyric acid 
transporters. The expressed complementary DNA confers transport of [3H]DA in 
Xenqpus oocytes and in COS cells. Binding of the cocaine analog [3H]CFT { [ 3 H ] 2 ~ -  
carbomethoxy-3P-(4-fluoropheny1)tropane) to transfected COS cell membranes yields 
a pharmacological profile similar to that in striatal membranes. 

OPAMIhTE TRANSPORTERS TERMI- 

nate dopaminergic neurotransmis- 
sion by Na+- and C1--dependent 

reaccumulation of DA into presynaptic neu- 
rons (1). Cocaine and related drugs bind to 
these transporters in a fashion that correlates 
well with their behavioral reinforcing and 
psychomotor stimulant properties; these 
transporters are thus the principal brain 
"cocaine receptors" related to drug abuse 

( 2 ) .  
To find cDNAs that encode members of 

this neurotransmitter transporter family and 
that are expressed in brain regions rich in 
dopaminergic neurons, 500,000 plaques of 
a size-selected h-Zap I1 rat ventral midbrain 
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cDNA library were screened with a radiola- 
beled oligonucleotide complementary to 
conserved segments of the norepinephrine 
(NE) and y-aminobutyric acid (GABA) 
transporters and products of polymerase 
chain reaction (PCR) amplification of brain 
cDNA with transporter-specific oligonucle- 
otides (3-5). Messenger RNA transcribed 
from one of the 27 hybridization-posit~ve 
clones, DATl, conferred consistent cocaine- 
blockable accumulation of [3H]DA in the 
Xenoplrs oocyte uptake assay that was more 
than ten times background levels (6, 7). 

pDATl contains a 3.4-kb cDNA insert 
with a 1857-bp open reading frame. Assign- 
ment of the first ATG as the translation 
initiation site, on the basis of resemblances 
to consensus sequences for translational ini- 
tiation (4, results in a protein of 619 amino 
acids with a nonglycosylated molecular 
weight of 69,000 (Fig. 1). Hydrophobicity 
analysis reveals 12 hydrophobic segments 
long enough to form transmembrane do- 
mains. The predicted DATl protein lacks an 
identifiable signal sequence. It displays four 
potential sites for N-linked glycosylation 
(Fig. 1). This sequence shows 67% amino 
acid identity and 81% similarity with the 
human NE transporter (3 ) ,  45% identity 
and 67% similarity with the rat GABA 
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