
surfaces or in the interiors of the outer planets 
and icy satellites has yet to be determined. 
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U and Sr Isotopes in Ground Water and Calcite, Yucca 
Mountain, Nevada: Evidence Against Upwelling Water 

Hydrogenic calcite and opaline silica deposits in fault zones at Yucca Mountain, 
Nevada, have created considerable public and scientific controversy because of the 
possible development of a high-level nuclear waste repository at this location. Stron- 
tium and uranium isotopic compositions of hydrogenic materials were used to test 
whether the veins could have formed by upwelling of deep-seated waters. The vein 
deposits are isotopically distinct from ground water in the two aquifers that underlie 
Yucca Mountain, indicating that the calcite could not have precipitated from ground 
water. The data are consistent with a surficial origin for the hydrogenic deposits. 

Y UCCA MOUNTAIN, NEVADA, HAS 

been selected for geologic evaluation 
as a potential site for a high-level 

nuclear waste repository (1). Faults and 
fractures cutting the volcanic rocks at Yucca 
Mountain are commonly filled with low- 
temperature secondary carbonates, oxides, 
and silicates (hydrogenic deposits) that pre- 
cipitated from aqueous solutions. Because 
these deposits mark the pathways of past 
fluid migration, an understanding of their 
origins is critically important in evaluating 
the site and predicting whether flooding of 
the repository is likely in the future. 

In the vicinity of Yucca Mountain, trenches 
have been excavated across faults as part of 

U.S. Geological Survey, Denver Federal Center, P.O. 
Box 25046, Denver, CO 80225. 

the investigation of Quaternary tectonic ac- 
tivity (2). Trench 14, excavated across the 
Bow Ridge fault on the eastern side of Yucca 
Mountain (Fig. l ) ,  exposes a vein-like deposit 
of calcium carbonate and subordinate opaline 
silica (Fig. 2) much wider and more complex 
than mineralogically similar deposits in other 
trenches. The origin of these veins and those 
at Busted Butte (Fig. 1) has been the focus of 
considerable controversy (3). 

Four main origins have been proposed for 
the hydrogenic deposits (4): (i) deposition 
associated with pedogenic (soil-forming) 
processes whereby descending meteoric wa- 
ters interact with surficial materials and pre- 
cipitate minerals along fractures and faults; 
(ii) deposition from cold springs due to 
movement of regional or perched ground 
water along faults; (iii) deposition from hot 

water (temperature % 30°C) along faults; 
and (iv) deposition through seismic up- 
welling of hot or cold water along faults as a 
direct result of strain release during faulting. 
Proponents of models that would result in 
flooding of the repository predict doomsday 
scenarios (3). 

Early field and mineralogic studies of de- 
posits exposed at Trench 14 and other sites 
suggested that the hydrogenic deposits 
formed by processes related to pedogenesis 
(5) .  Stable isotope studies showed that 6180 
and 8l3C of the vein deposits have values and 
relations similar to those in the local soils (6).  ~, 

Furthermore, the ground waters currently 
beneath Yucca Mountain would have to be 
greatly cooled and perhaps isotopically mod- 
ified to precipitate the observed calcites (7). 

We describe Sr and U isotopic composi- 
tions of the deposits and of possible source 
waters. Neither Sr nor U fractionate iso- 
topically during precipitation of hydrogenic 
deposits. Isotopic identity between hydro- 
genic deposits and possible source waters 
would be permissive evidence for a genetic 
link, whereas isotopic disparity would pre- 
clude any direct genetic relationship (8, 9). 

Sr is an excellent tracer in the hydrologic 
cvcle because it is relativelv abundant in 
water and because its isotopic composition, 
reported as 87Sr/86Sr, can be measured with 
great precision and accuracy (?0.00005 or 
better). Ground water attains its Sr isotopic 
signal at recharge and along its flow path by 
dissolution of or exchange with minerals in 
the aquifer (8). Differences between the 
isotopic composition of the ground water 
and that of the bulk aquifer can result from 
preferential dissolution of minerals with dif- 
ferent 87Sr/86Sr values. Commonly, in rocks 
that are old enough to have an accumulated 
radiogenic Sr from the decay of 87Rb, a 
phase-with a low RbJSr value (for example, . , 

plagioclase) is preferentially attacked, and 
water is less radiogenic (lower 87Sr/86Sr 
value) than its host rock 19). However, 

\ ,  

disequilibrium between solid and liquid 
during mineral precipitation does not occur 
(lo), and the isotopic composition of a solid 
and of the water from which the solid 
precipitated will be identical. 

The Sr isotopic compositions of ground 
waters in the ~ i r t i a r v  aquifer beneath Yucca 

, A  

Mountain and of vein carbonates at Trench 
14 and Busted Butte do not overlap signif- 
icantly (Fig. 3). The 15 samples of ground 
water from the Tertiary aquifer have a mean 
87Sr/86Sr value of 0.71092 ? 0.00074 
(standard deviation), and the 28 samples of 
vein carbonate have a mean 87Sr/86Sr value 
of 0.71241 ? 0.00022 A t test shows that 
the mean values are significantly different (P 
< 0.05). The two water samples from the 
Yucca Mountain area with the largest s7Sr/ 
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"Sr values were taken from drill holes in the 
unsaturated zone; the five samples with 
smaller 87~r/'% values are from the satu- 
rated zone. The least radiogenic sample 
(87Srf'%r = 0.70925) was obtained from a 
well in Beatty Wash just north of Yucca 
Mountain (Fig. 1). A single bailed sample 
from deep within the Paleozoic aquifer (drill 
hole UE-25p#1, Fig. 1) has a signi6cantly 
lower 87Sr/%r value than carbonate vein 
samples (Fig. 3). Thus, the Sr data clearly 
predude precipitation of xhe carbonate de- 
posits in Trench 14 and at Busted Butte 
from present-day ground water in the Ter- 
tiary acp$er beneath Yucca Mountain, and, 
if the bailed sample is representative of the 
dissolved Sr in the Paleozoic aquifer at 
Yucca Mountain, that source can also be 
excluded. However, more samples obtained 
by pumping from the Paleozoic aquifer are 
needed to confirm this condusion on the 
basis of Sr data alone. 

Ground water currently beneath Yucca 
Mountain is much younger than the bulk of 
the carbonate deposits at Trench 14. The 
analyzed ground wams have apparent 14C 

5 . 2 .  PhotographofthesouthwallofTraKh 
14 showing the large vein Qposits of cakitc and 
opaline silica. 

Fig. 1. Map showing the location 
of Trench 14, the Bustcd Butte 
sampling sitc, the Paleozoic aq& 
drill hole, UE-25p#l, and Devils 
Hok. 

age. of 4 to 30 thousand years (ka) (li), 
whereas the vertical veins in Trench 14 have 
U-series ages of 228 to >400 ka (2, 12). 
Possible long-term temporal isotopic varia- 
tions in the ground water systems beneath 
Yucca Mountain cannot be c o n s b e d  di- 
rectly. However, a long-term isotopic record 
of a major flow system east of Yucca Moun- 
tain is contained in carbonate deposits at 
Devils Hole, an open fracture in Cambrian 
limestone at the discharge of the Ash Mead- 
ows flow system (13, 14). The Ash Mead- 
ows flow system mends east and north of 
the Nevada Test Site and is apparently sep- 
arated from Yucca Mountain by a potentio- 
metric high located near the eastern edge of 
Fig. 1 (15). It dislarges at a spring line 
about 50 km south-southeast of Trench 14 
and at an altitude approximately 430 m 
lower than Trench 14. Calcium carbonate 
was deposited continuously for nearly the 
last 600,000 years at Devils Hole. The pres- 
ence of these deposits demonstrates the 
long-term stability ofthe flow systems in the 
region, and the successive layers of calcite 
preserve a long-term record of the isotopic 
composition of ground water. The 87Sr/%r 
values of six carbonate samples and present- 
day water vary beyond eqmimental mor  
(0.71232 to 0.71282), but the isotopic 
composition has not changed greatly during 
the last 600,000 years (16). A similarly 
limited range in 87Sr/%r values can reason- 
ably be i n f d  for ground water of the 
Tertiary aquifer in the Yucca Mountain area 
because both systems are within the same 
geologic proviace and any geologic changes 
affecting one would have a f f d  the other 
as well. Thus, by analogy with the isotopic 
stability of the Ash Meadows flow system, 
we conclude that the ground water beneath 
Yucca Mountain for the past 600 ka is not 

likely to have had 87Sr$"Sr values high 
enough to have bem a source for the Sr in 
the vertical vein deposits. 

Might the ground water have aquiced 
radiogenic Sr during ascent? The saturated 
part of test well WT-4 is entirely within the 
Calico Hills tuff, which has an average cock 
87Sr/'%r value of 0.7133 (18), but the 
water has a 87Sr$"Sr value of0.71002 (19). 
The saturated part of test well WT-7 is 
entirely within the Topopah Springs Mem- 
ber of the Paintbrush Tuff, which has an 
average cock 87Sr/'%r value of0.7160 (18), 
but the water has 87Sr/%r value of 0.71027 
(19). In neither case is the water as radio- 
genic as its host [which has been noted for 
other water-silicic cock pairs (9)], and, in 
both cases, even prolonged contact with a 
host cock that is much more radiogenic than 
the vein carbonates has not i n d  the 
87Sr$bSr value in the water enough to per- 
mit a genetic relation between the ground 
water and the hydrogenic deposits. 

The similarity of 87Sr$6Sr values for vein 
carbonates and ground water in the Ash 
Meadows flow system with those of the 
carbonates at Trench 14 and Busted Butte is 
fortuitous because this flow system does not 
extend beneath Yucca Mountain. Further- 
more, the system probably has not dis- 
charged at altitudes higher than the mouth 
of Devils Hole during the past several hun- 
dred thousand years, and water table eleva- 
tions have not been more than 4 to 9 m 
higher in the past 100,000 years (13). The 
Sr isotope budget of the Ash Meadows 
system is a complex integration of values 
aquiced in the recharge areas and along the 
flow paths (17). The mean 87Sr/%r value 

NTertiarVaquifer 
mveincarbonaae 
Y yucca Mountain area 

0.7090 0.7100 0.71 10 0.7120 0.7130 

"SrPsr 
Fig. 3. Himgmms showing the disuibution of Sr 
isotopic compositions for the vein carbonatcs, 
pedogenic carbonates, and water from the Tertia- 
ry-Quaternary aquifer (19). Also shown arc re- 
sults for one water sample from the Paleozoic 
aquifer &mined from drill hole UE-25p#l. 
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Fig. 4. Histograms showing the current isotopic 
composition of U in water from TertiaryIQuater- 
nary and Paleozoic aquifers and that of hydro- 
genic carbonates from Trench 14 and Busted 
Butte at the time of crystallization. The carbonate 
samples include three vein samples, four calcrete 
samples (all from Trench 14), and seven rhyzo- 
liths (from calcic horizons at Busted Butte) (12, 
13, 25). Where two or more analyses exist for a 
single site, results have been averaged. In cases 
where there are significant disagreement between 
analyses (>0.1 j, the most recent results have been 
used. 
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( k l u )  for the larger springs at Ash Mead- 
ows, which account for 83% of the dis- 
charge, is 0.71250 k 14. Three small 

0 1 2 3 4 5 6 7  

springs at the southeastern end of the spring 
line carry Sr with much higher 87Sr/86Sr 
values (between 0.71703 and 0.71909), 
possibly reflecting a more local effect. Water 
entering the system through Paleozoic lime- 
stones in the Spring Mountains acquires Sr 
with a 87Sr/86Sr value between 0.7084 and 
0.7088. Sr with higher 87Sr/86Sr values (up 
to 0.7155) is added to the system from far to 
the northeast in the vicinity of Pahranagat " 
and Emigrant valleys. The integration of 
these disparate Sr isotope values to yield 
relativelyA uniform values centered at 
0.71250 for the larger springs at Ash Mead- 
ows develops within the final 30 to 40 km of 
the flow system. Thus, ground water both in 
the Ash Meadows flow system (87Sr/86Sr 
values of 0.7084 to 0.7191) and in the 
Tertiary aquifer in the vicinity of Yucca 
Mountain (87Sr/86Sr values of 0.7093 to 
0.7119) shows substantial regional isotopic 
variability. If carbonate veins, which are 
distributed over several tens of square 
kilometers, were deposited from either sys- 
tem at various localities along the flow 
paths, they would also show this regional 
variability in 87Sr/s6Sr, a variability not ob- 
served in the vein carbonates at Yucca 
Mountain and vicinity (Fig. 3). 

The s7Sr/s6Sr values in the vein and pe- 
dogenic carbonates are very similar, but the 
vein materials are, on the average, slightly 

more radiogenic (Fig. 3). The isotopic com- 
position of the vein carbonate has been 
influenced by entrained silicates and, possi- 
bly, by the host rock. For example, the two 
least radiogenic vein carbonate samples at 
Trench 14 (87Sr/86Sr values of 0.71190 and 
0.71187) have acquired unradiogenic Sr 
from an adjacent lens of Sr-rich basaltic ash 
(87Sr/86Sr values of 0.70888); other parts of 
the same vein yielded values of 0.71246 to 
0.71261 (19). The volcanic wall rock for the 
veins contains Sr with higher 87Sr/86Sr val- 
ues (0.7120 to 0.7202) than that of the vein 
carbonate (19). A small component of Sr 
derived from the host volcanic rocks by 
long-term weathering could account for the 
slight separation between vein and pe- 
dogenic carbonate. On a more regional 
scale, including a number of samples from 
Crater Flat, 87Sr/86Sr values ( k l u )  for the 
pedogenic carbonates and vein carbonates 
are indistinguishable at 0.71233 k 28 (n = 
37) and 0.71238 k 26 (n = 39) (20). Pb 
isotopic data generally support the same 
conclusions as Sr and clearly show the effects 
of admixed volcanic detritus on the isotopic 
composition of the carbonate veins (21). 

Disequilibrium between 234U and its par- 
ent isotope 238U can develop in ground 
water over time by alpha recoil and related 
processes (22). The degree of disequilibrium 
is expressed by the activity ratio 234U/238U, 
which is generally precise to k0.04 (la) and 
which at equilibrium conditions is unity. 

The 234U/238U for ground water in 
southern Nevada is typically greater than 2.0 
(that is, more than a 100% excess of 234U) 
(22). The disequilibrium is even more pro- 
nounced in the vicinity of Yucca Mountain, 
where three samples from the Tertiary-Qua- 
ternary aquifer have 234U/238U values great- 
er than 5.0, and one sample from the Paleo- 
zoic aquifer has a 234U/238U value of 2.71 k 

0.09 (Fig. 4). In contrast, vein carbonates 
and horizontal laminar carbonates were de- 
posited by waters with a 234U/238U value of 
1.6 or less (Fig. 4), and the four analyzed 
vein samples from Trench 14 had 234U/238U 
values of less than 1.4 at the time of depo- 
sition (12). Thus the regional aquifers and 
veins cannot be genetically related. The 
234U/238U for soils of the Yucca Mountain 
area is less than 2.00 and generally less than 
1.40 (12, 23). These values agree well with 
those observed for the carbonate veins and 
horizontal laminar carbonates (Fig. 4) and, 
therefore, suggest that the U in both types 
of carbonates was derived from water per- 
colating through the overlying soils. 

The initial activity ratio in 21 samples 
from Devils Hole representing ages of 60 to 
300 ka ranged from 2.65 to 2.82 (24). If a 
similarly narrow range existed in ground 
water beneath Yucca Mountain, which is 

highly probable, the veins at Busted Butte 
and Trench 14 cannot have been precipitat- 
ed from any of the regional aquifers. 

8 7 ~ ~ 1 8 6 ~ ~  and 2 3 4 ~  / 238 U data preclude 

precipitation of vein and other carbonates 
exposed in Trench 14, Busted Butte, and 
Crater Flat from ascending waters like those 
currently in aquifers beneath Yucca Moun- 
tain. Isotopes in these systems do not frac- 
tionate during chemical reactions or phase 
changes, and, therefore, the large differences 
observed between isotopic compositions of 
ground water (or old hydrogenic deposits 
formed from ground water) and isotopic 
compositions of vein carbonate at Trench 14 
and Busted Butte preclude a genetic relation 
between the two. This conclusion is further 
supported by the isotopic compositions for 
C and 0 in the vein carbonates and ground 
water samples (6, 7). Thus, all modes of 
origin that require bringing water from 
depth to form the vertical vein deposits can 
be ruled out. 

The Sr, U, Pb, C, and 0 isotope systems 
all show a good correspondence between 
pedogenic and vein carbonates. Thus, car- 
bonate veins, such as those exposed at 
Trench 14 and Busted Butte, must have 
formed by descending rather than ascending 
water as follows (25): Meteoric water dis- 
solves or washes dust high in carbonate into 
permeable zones, such as fractures and po- 
rous soils. In addition, some soil CO, com- 
bines with Ca from the bedrock or soil; this 
too dissolves in the vadose water. Next, 
evaporation and transpiration remove water 
from the vadose zone, thereby increasing 
concentrations of dissolved species suffi- 
ciently that calcite and opaline silica precip- 
itate. The force of crystallization pushes 
blocks apart on a microscopic scale such that 
over time, blocks are left separated from one 
another with pedogenically precipitated 
minerals forming bands that are concentric 
to the blocks or parallel to vein walls, as 
shown on Fig. 2. 
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Gene Trees and the Origins of Inbred Strains of Mice 

Extensive data on genetic divergence among 24 inbred strains of mice provide an 
opportunity to examine the concordance of gene trees and species trees, especially 
whether structured subsamples of loci give congruent estimates of phylogenetic 
relationships. Phylogenetic analyses of 144 separate loci reproduce almost exactly the 
known genealogical relationships among these 24 strains. Partitioning these loci into 
structured subsets representing loci coding for proteins, the immune system and 
endogeneous viruses give incongruent phylogenetic results. The gene tree based on 
protein loci provides an accurate picture of the genealogical relationships among 
strains; however, gene trees based upon immune and viral data show significant 
deviations from known genealogical afhities. 

E STIiMATEVG PHYLOGENETIC RELA- 

tionships among groups of orga- 
nisms is complicated by the existence 

of different types of phylogenetic trees. For 
example, species trees represent the putative 
evolutionary pathways of a group of species 
or populations whereas gene trees represent 
putative evolutionary pathways depicting 
changes in homologous genes sampled from 

W. R. Atchley, Department of Genetics, North Carolina 
State University, Raleigh, NC 27695. 
W. LM. Fitch, Department of Ecology and Evolutionary 
Biology, University of California, Irvine, CA 92717. 

different taxa (1-3). Gene trees can be con- 
structed from DNA sequences, protein se- 
quences, electrophoretic data, and antigenic 
data. Trees can also be constructed from 
genetic data obtained from DNA-DNA hy- 
bridization, chromosome structure, and mor- 
phological traits. However, different data of- 
ten produce quite different trees and, as a 
result, provide qualitatively different esti- 
mates of phylogenetic relationships (1-9). 

A major hindrance to evaluating concor- 
dance among different estimates of evolu- 
tionary relationships is a lack of examples 
where extensive data on genetic divergence 

exist for groups of organisms with well- 
documented phylogenies. For inbred strains 
of mice (Mus musculus), there is a wealth of 
genetic data from various levels of organiza- 
tion for a large number of genetically dis- 
tinct strains having reasonably well-known 
genealogies. Thus, they can provide a pow- 
erful source of data to test important evolu- 
tionary hypotheses including those about 
concordance between species and gene trees 
when the latter are based upon different 
types of genetic data (4-8). 

Herein, we examine genetic divergence 
among 24 well-known inbred strains of mice 
using 144 distinct gene loci. These data 
permit examination of two important ques- 
tions: First, do patterns of genetic diver- 
gence among these 144 loci accurately re- 
flect known relationships among strains? 
Second, will different st&tured subsamples 
of loci give equivalent phylogenetic conclu- 
sions, that is, are gene trees based upon 
different types of loci concordant? 

Data and analyses. The 24 inbred strains 
included in these analyses are (in alphabetic 
order): 129, A, AKR, BALB/c, BDP, BUB, 
CBA, CE, C3H, C57BL, C57BR, C58, 
DBA/l, DBA/2, I, LP, NZB, P, RF, SEA, 
SEC, SJL, ST, and SWR. The actual geno- 
types for the 144 homozygous loci em- 
ployed in these analyses for each of the 24 
inbred strains are listed by Lyon and Searle 
(10). Only cladistically informative loci are 
included (those with at least two alleles, each 
present in two or more strains). A list of the 
actual loci included in these analyses is avail- 
able from the authors. When genetic differ- 
ences exist among sub-lines of any of these 
strains, the Jackson Laboratory sub-line was 
chosen as standard. Figure lk summarizes 
the known genealogy of these 24 strains 
(10-12). These 24 strains were deliberately 
chosen to include some of the most widelv 
used inbred mouse strains including com- 
monly used stocks of uncertain origin (13). 
For purposes of this discussion, "genealog- 
ical relationships" refers to affinities among 
strains known from the original crossing 
experiments (Fig. 1A). "Phylogenetic rela- 
tionships" refers to estimations of affinities 
inferred from analyses of the genetic data. 
Phylogenetic trees presented here are gene 
trees because their structure reflects Datterns 
in reduction of residual heterozygosity (1). 

Phylogenetic analyses of all loci. A matrix of 
painvise genetic distance estimates (D) was 
generated for the 24 strains based upon all 
144 loci. The genetic distance value (D) 
represents the percentages of the fixed alleles 
that differ between a pair of strains ( 5 ) .  All 
loci are homozygous within a strain. 

As points of reference, the following are 
strains of known relationships togetherwith 
their corresponding D values and an esti- 
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