Control

Antisense

Air

C,H, treated

Fig. 5. Effect of C,H, treat-
ment on the antisense phe-
notype. Mature green fruits
from control and homozy-
gous antisense plants were
harvested 49 days after pol-
lination and treated with air
for 15 days or with 10 pl of
C,H, per liter of air for 1, 2,
or 15 days and then re-
turned to air (25). Fruits
were photographed on day
16 after harvesting.

15 2

malian hormone receptors are both transcrip-
tional activators and Zn?* metalloproteins
(22). Expression of antisense RNA to ACC
synthase may ameliorate losses due to over-
ripening of fruits and vegetables during trans-
portation or because of lack of refrigeration.

(2]
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t was inserted into ptACC2A
dngemdw:th)(bal,madcblum—mdedwudﬂ(know
polymerase, and digested with Bam HI. The result-
ing plasmid ptACC2B contains the 302-bp CaMV
35S promoter, followed by the tACC2 ACC syn-
thase cDNA in an antisense orientation. The 2.1-kb
antisense gene (CaMV-tACC2) was excised by par-
ualSacIandcomplctcSalIdlgmonandhgzted
into pBI101 vector (Clontech, Palo Alto, 'CA),
which yields pP035 (Fig. 1A). The pP035 plasmid

was transferred from Escherichia coli DH5a to Agro-
bacterium tumefaciens LBA4404 by triparental mating
with E. coli HB101 harboring pRK2013. Thc to-
mato cultivar VF36 was transformed with 14-day-
old as described [S. McCormick et al.,
Plant Cell Rep. 5, 81 (1986)].

. Genomic DNA was extracted from frozen leaf tissue,

dlémwdmdanoRIandPstI,andhybﬁdimdwidi

P-labeled 657-bp Sac I-Hind ITII from
tlwfotmhmnoftthEqACCngc(Mw
5299 bp) (9).

25. Fruits were placed in 4-liter glass jars and flushed

with a stream of water-saturated air with or without

1000 pl of C3Hj or 10 pl of C,H, per liter of air.
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A 32-kD GTP-Binding Protein Associated with the

CD4-p56'* and CD8-p56"* T Cell Receptor Complexes

JAaNICE C. TELFER AND CHRISTOPHER E. RUDD*

The guanosine triphosphane (GTP)-binding proteins
erotrimeric G proteins (for example, G,, Gg, smaller GTP-binding proteins that

function in protein sorti

and the oncogenic protein p21™*

include signal-transducing het-

. The T cell receptor

complexes CD4-p56'* and CD8-p56'* were found to include a 32- to 33-kilodalton

phosphoprotein (p32) that was recognized by an antiserum to a consensus GTP-
binding region in G proteins. Immunoprecipimted CD4 and CD8 complexes bound

GTP and hydrolyzed it to

guanosine diphosphate (GDP). The p32 protein was

covalently linked to [a-3*P]GTP by ultraviolet photoaffinity labeling. These results
demonstrate an interaction between T cell receptor complexes and an intracellular
GTP-binding protein.

TP-BINDING PROTEINS AFFECT
the enzymatic activity of adenyl -
clase, retinal cyclic guanosine

monophosphate phosphodiesterase (GMP),
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and phospholipase C (1, 2). Activation of
GTP-binding proteins in T cells by nonhy-
drolyzable GTP analogs induces phosphoi-
nositol turnover, suggesting that GTP-
binding proteins may function in T cell
activation (3). Ultraviolet cross-linking of
[a-32P]GTP to T cell proteins reveals ten
GTP-binding proteins, including ones of
30 and 34 kD (4).

To determine if the CD4-p56'* and
CD8-p56'* complexes (5) contained a
GTP-binding protein, we used an antiserum
(anti-G protein) to the consensus GTP-
binding region (Gly-(X),-Gly-Lys) of the
heterotrimeric G protein G, (6) that recog-
nizes a subunits of the heterotrimeric G
proteins G, G;, G,, G,, and transducin.

Immune complexes were isolated from
[y-3?Pladenosine triphosphate (ATP)-la-
beled membranes of the human T cell line
HPB-ALL. Antibodies to CD4 (anti-CD4)
and CD8 (anti-CD8) precipitated a phos-
phorylated 55- to 60-kD protein corre-
sponding to p56'*, a 32- to 33-kD doublet
(p32), and several higher molecular weight
bands (Fig. 1). Anti-G protein precipitated

>
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Fig. 1. Coprecipitation of C
p32 with the CD4-p56"*
and CD8-p56'* complexes.
Membranes from HPB-
ALL cells (A), thymocytes
(B), or PBLs (C) (8 x 107
cells per milliliter) were pre-
pared (11) and labeled in
100 pl of 25 mM Hepes
(pH 7.2), 3.8 mM MnCl,,
3.7 mM MgCl,, and 60 pn.Ci
of [y-*?PJATP (3000 Ci/
mmol, NEN) for 12 min at
25°C. Membranes were sol-
ubilized in 20 mM tris (pH
8.15), 150 mM NaCl, 1 mM phenylmethylsulfo-
nyl fluoride (PMSF), and NP-40 (1%). The lysate
was incubated with antibody and BSA (1 mg per
sample) at 4°C for 1 hour, and 50 pl of a
suspension (1:1) of protein A-Sepharose (Phar-
macia LKB) in lysis buffer containing NP-40
(1%) was added. The sample was rotated for 30
min and washed twice with lysis buffer containing
NP-40 (1%). The antibodies used were 19thy
5D7 (anti-CD4) (14), 2T8-5H7 (anti-CDS8) (15),
P-960 [anti-G protein (anti-G)] (6), anti-Lck
(16), Rasl0 (anti-Ras) (17), 2F12 (anti-CD11a)
(18), T112 (anti-CD2) (19), and rabbit antibody
to mouse IgG (Dako).

9 10 1

440

Fig. 2. Precipitation of p32 and asso-

ciated molecules by anti-G protein
(anti-G). Precipitation was blocked by
the peptide used to generate the anti-
serum (G) and by a mixture of G; and
G, (A). The p32 protein immunopre-
cipitated with anti-CD4 was reprecipi-
tated by anti-G protein (B). Immuno-
precipitations were done as described
in Fig. 1; peptides were added during
incubation with the antibody. T8 pep-
tide, ArgArgValCysLysCysProArgPro-
ValValLysSer; Lck peptide, GluLeu-
TyrGlnLeuMetArgLeuCysTrpLysGlu-
Arg. For reprecipitations (5), ant-
CD4 immunoprecipitates were boiled
for 5 min in 30 pl of a solution of SDS
(5%). The supernatant was filtered

anti-Lck
~ anti-LFA-1

anti-G
- anti-G + T8
anti-G + G

13 1'I

with an Amicon concentrator (Centricon 30), diluted in lysis buffer containing NP-40 (1%), and

immunoprecipitated.

two prominent bands of 56 kD and 32 to 33
kD (Fig. 1), suggesting that a molecule
recognized by this antiserum is associated
with CD4-p56'* and CD8-p56'*. Occa-
sionally, other less prominent bands of 40 to
85 kD were coprecipitated; these may rep-
resent other G proteins or G protein—asso-
ciated proteins. Similar patterns of immuno-
precipitated bands were observed from
normal human thymocytes and peripheral
blood lymphocytes (PBL) (Fig. 1).

Recognition of p32 and associated pro-
teins by anti-G protein was blocked by the
peptide used to generate the antiserum,
and by purified G; and G,, which contain
the consensus GTP-binding domain (Fig.
2). Peptides corresponding to portions of
CDS8 and p56'* did not block recognition
(Fig. 2). :

To determine if the p32 associated with
CD4 was directly recognized by anti-G pro-
tein, anti-CD4 immunoprecipitates were de-
natured in SDS and reprecipitated with an-
ti-G protein. Of the proteins present in the
anti-CD4 immunoprecipitate, only p32 was
recognized by anti-G protein (Fig. 2). Fur-
thermore, recognition of p32 was blocked by
the peptide used to generate the antiserum
but not by an irrelevant peptide (Fig. 2).

To determine if the 32-kD proteins pre-
cipitated by antibody to p56'* (anti-Ick),
anti-CD4, and ant—G protein were identi-
cal, the immunoprecipitated proteins were
analyzed by two-dimensional SDS-poly-
acrylamide gel electrophoresis (PAGE).
Anti-CD4, anti-lck, and anti-G protein
precipitated a 32- to 33-kD protein that
resolved at an identical isoelectric point
(pI) of 5.0 to 5.2 (Fig. 3). Likewise, the
55- to 60-kD protein (p56'*) coprecipi-
tated by anti-CD4 migrated at the same pI
as the corresponding protein precipitated
by anti-G protein.

To examine the function of p32, we mea-
sured GTP binding and hydrolysis of GTP

acid base acid base

31-

Fig. 3. Two-dimensional SDS-PAGE analysis of
immunoprecipitates formed by anti-CD2 (A),
ant-CD4 (B), anti-Ick (C), and anti-G protein
(D). Immunoprecipitates of [y-32P]JATP-labeled
proteins from HPB-ALL cells were prepared as
described (Fig. 1). Two-dimensional gels were
run as described (20). Acidic and basic ends of the
isoelectric focusing gel are indicated.

to GDP by the immunoprecipitated pro-
teins. Both ant-CD4 and and-CD8 im-
munoprecipitates bound GTP (Fig. 4A).
Immunoprecipitates with antibody to
CDl1a (Fig. 4A), antibody to CD2, and
rabbit antibody to mouse immunoglobulin
G (IgG) (7) showed no binding of GTP.
The amounts of GTP binding and GTP
hydrolysis detected in anti-CD4 and anti-
CD8 immunoprecipitates increased over
time. The ratdo of bound GDP to total
bound nucleotide remained approximately
constant during the 60-min incubation.
Samples of the supernatant contained low
amounts of unbound GDP, averaging 9% of
unbound nucleotide. A much higher pro-
portion of GDP (60 to 70% of bound
nucleotide) was associated with CD4 and
CD8 immunoprecipitates, indicating that
GTP hydrolysis is specific to CD4 and CD8.
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An excess of unlabeled GTP blocked all
[«-**P]GTP binding; uridine triphosphate
(UTP) and cytidine triphosphate (CTP) in-
hibited to a lesser degree, dcmonstraung
specificity of nucleotide binding in immuno-
precipitates with anti-CD4, anti-CD8, and
antibody to p21™* (anti-Ras) (Fig. 4B). Hy-
drolysis of GTP was Mg>*

Low amounts of GTP binding were de-
tected in anti-G protein immunopre-
cipitates (7), which is not surprising be-
cause that antiserum reacts with a region
crucial to GTP binding (8). A 4000-fold
molar excess of the ATP analog 5'-ade-
nylimidodiphosphate (AMP-PNP) was in-
cluded in all GTPase assays, to prevent
binding and hydrolysis of GTP by protein
kinases that primarily utilize ATP, such as
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p56'*. Anti-lck immunoprecipitates (7)
bound low amounts of GTP and contained
low amounts of phosphorylated p32 (Fig.
3).

Ultraviolet irradiation of guanine nucleo-
tide-binding proteins forms covalent link-
ages between those proteins and bound
guanine nucleotide (4). Proteins from T cell
membranes were cross-linked with [o-32P]
GTP and separated by two-dimensional SDS-
-PAGE. One of the T cell proteins migrated at
the same molecular weight and isoelectric
point as >*P-labeled p32 from an ant-CD4
immunoprecipitate. This [a-*2P]GTP-la-
beled molecule was coprecipitated by anti-
CD4, demonstrating that p32 associated with
CD4 binds GTP (Fig. 4C).

Receptors with tyrosine kinase activity
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Fig. 4. Binding and hydrolysis of GTP in anti-CD4 and anti-CD8 immunoprecipitates. (A) Hydrolysis
ofbo‘de'l'Pasuyedasenmll as described (21). Unlabeled immunoprecipitates were washed in
bmdlngu&r(ﬂ)oommngo .12 M (NH,),SO,, and incubated in GTP binding

buffer containing
25 oM [a-*P]GTP (Amersham, 400 Ci/mmol) and 0.1 mM 5’ AMP-PNP (Sigma). Samples of the
were taken at cach time to monitor hydrolysis of unbound GTP. The beads

were washed twice in GTP-

buffer with Triton X-100 (0.01%) (Picrce) and the nucleotides were
cluted in a solution of 2 mM EDTA and SDS (0.5%) at 65°C. Eluted nucleotides and were
spotted on polyethylencimine-cellulose thin-layer chromatography plates (Thomas) and in LiCl
(0.2 M for 2 min, 1.0 M for 6 min, 1.6 M for remainder). (B) Specificity of GTP binding. Nucleotide
_ oompeuuonasuyswetedoncasm(A) with 0.1 mM unlabeled UTP, CTP, or GTP in the incubation
Sephnmsebwiswmwasbedandoommedenoﬂxm(NEN)(u=3) (C) Two-dimensional
SDS-PAGE analysis of T cell GTP-binding proteins covalently linked to [a-**P]GTP by ultraviolet
photoaffinity labeling. A protein (pancla)wasdmdwnthamolemhrw?;h and pI identical to those
of 32P-labeled p32, from an anti-CD4 immunoprecipitate (panel c). The [a- P]Gl'P—labcledpmnp32
was coprecipitated by anti-CD4 (pancl b). The 50-kD band was
appearing in the controls (7). Manbtanswuemadcasdambedml’nglwashcdmbtﬂer
containing 10 mM tris (pH 7.4), 150 mM NaCl, and 0.12 M (NH,),SO,. GTP was cross-linked to T cell

GTP- proteins by ultraviolet irradiation as described (4). Wholemanbunes(ﬁomappmnmmﬂy
4x10"oells)wuesohlb|hmdmsampkbuﬂetoonmmngNP-40(36%), (0.09%), 94 M
urea, and B- (0.1%). Membranes (from approximately 9 % 10° cells) were solubilized in

lysis buffer containing NP-40 (1%) and immunoprecipitated as described in Fig. 1.
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such as the epidermal growth factor recep-
tor have been functionally linked to G
proteins (9). Our results demonstrate that
T cell receptors with associated kinase ac-
tivity interact with a GTP-binding protein,
which can only be definitively identified by
cloning of p32. Aggregation of CD4 or
CD8 with T cell receptor-CD3 (10, 11)
and association of p56'* with CD8 or
CD4 (12) are correlated with proliferation
of T cells. These proliferative effects may be
mediated by both p56'* and p32. The
interaction of p56'* with p32 may be
similar to the functional dcpcndcncc of src
on p21™ (13).
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