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(R2) generation of transgenic plants. South- 
em (DNA) blot analysis showed that A1 1.1 
plants from the R1 generation (Fig. 1B) 
contained an additional 1.7-kb DNA frag- 

Reversible Inhibition of Tomato Fruit Senescence by ment that "ppted as a sing* lm. (3r1 
ratio). Comparison of the hybridization in- 

Antisense RNA tcnsities between the end0g;enou.s sinde- 
copy LE-ACC2 synthase g&e (9) and-;he 

PAUL W. OELLER, LU MIN-WONG, LOVERINE P. TAYLOR,* antisense gene indicates the presence of ten 
DEBORAH A. PIKE,? ATHANASIOS THEOLOGIS$ antisense insertions per plant (Fig. 1B). 

Control fruits kept in air begin to produce 
Ethylene amtrols fruit ripening. Expression of antisense RNA to the rate-limiting GH, 48 to 50 days after pollination, then 
enzyme in the b ' i t h e t i c  pathway of ethylene, 1-aminocydopropane-l&xylate undergo a respiratory burst (lo), and fully 
synthaae, inhibits fruit ripening in tomato plants. Adrmarstn . . tion of exogenous ripen after ten more days (Figs. 2A and 3). 
ethylene or propylene reverses the inhibitory dlForr This d t  demonstrates that Ethylene production was inhibited by 
ethylene is the trigger and not the by-product of ripening and raises the prospect that 99.5% in antisense fruits, which fail to ripen 
the life-span of plant tissues can be extended, thereby preventing spoilage. (Fig. 2A). The basal level of GH, evolution 

in antisense fruits is below 0.1 nl of C2H, 

I N PLANTS, RIPENING OF A FRUIT IS enzyme ACC synthase (4, 8). Induction of per gram of fruit mass per hour. The red 
the prelude to senescence, the final GH, production requires de novo synthesis coloration resulting from chlorophyll degra- 
phase of development and differentia- of this enzyme (8). ACC s y n h  is encoded dation and lycopene biosynthesis is also 

tion (1, 2). During ripening, climacteric in tomato by a divergent multigene family, inhibited in antisense fruits (1 1).  A p r o p -  
fruits, such as tomato and banana, undergo two members of which are expressed dur- sive loss of chlorophyll from antisense fruits 
marked changes in composition and texture ing fruit ripening (9). Full-length cDNAs is seen 10 to 20 days later than the loss is 
and have a burst of respiration (climacteric from the two genes, LE-ACC2 and LE- seen in the control fruits, resulting in a 
rise) with a concomitant increase in ethylene ACC4, have been isolated and structurally yellow color. Antisense fruits kept in air or 
(G&) production (1,3). Climacteric fruits characterid (9). on the plants for 90 to 120 days eventually 
can be induced to ripen by treatment with We expressed antisense RNA derived develop an orange color but never turn red 
C2H4 at concentrations above 0.1 PI of from the tACC2 cDNA of the LE-ACC2 and soft (12) or develop an aroma. Antisense 

per liter of air. Once ripening is gene constitutively in transgenic plants us- fruits in air do not show the respiratory 
initiated, the endogenous C,Ij[4 production 
rises autocatalytically (4). Ethylene affbxs 
gene tranmiption in a variety of tissues (3, 
and physiological evidence indicates that A B 

G H 4  is the natural ripening hormone (1,6, 
7). We now use antisense RNA to inactivate 
the rate-limiting enzyme in the C2& bio- 

;1, 
P S  B E Sc E 

synthetic pathway and show that GH, mg- 
p, 9 "1 -3.0 

gem ripening and senescence of tomato (Ly- 
m@on esculentum) fruit. 

The step in the synthesis of Fig. 1. Transformanon of tomato plants with annsenge ACC 
GIj[4 the conversion of S-adenosyhe- synthase gene. (A) The antlsen~e construct pP035 The 
thionine to 1-aminocydopropane-l-carbox- cDNA sequence tACC2 of the LE-ACC2 gene (9) was 
ylk acid (Am), the immediate pm-r of mserted In reverse onentanon between the CaMV 35s 

C2H4, a p- that is caw by the promoter and the nopal~ne synthase (NOS) termtnator Into 
the vector pRIlO1. Resmcnon sltes are as follows: P, Pst I, 

) -1.7 

S, Sal I; B, Ram HI; E, Eco RI; and Sc, Sac I Transcript~on 
Plant Gme Expression Cenm, Univasity of California start IS at + 1. (6) Southern blot analysis. Total DNA (5 pg) 
at -u&d States D w t  of A g n m  from untransformed and transformed plants (23) (R1 gen- 1 2 3 
ALbany, CA 94710. eratron) was dteested w ~ t h  Eio  Rl and Pst I and hvbnd~zed 

(24) with a 65?bp fragment from the fourth exon bf the LE-ACC2 gene. Lane 1, untransformed; lane 
*Presentaddress: DcvofH*m W-- 2, homozygous antisense; and lane 3, heterozygous antisense plants. Hybridizing fragments correspond ton h a  Uniwsi PuUman, W A  94164. 
+mt & ~orp., ~~ayville, CA 94608. to the endogenous (LE-ACCZ) gene at 3.0 kb and the antisense (P035) gene at 1.7 kb. The 2.5-kb 
flo whom cmrcspondma ihodd IG addrcsscd. hybridizing fragment in lanes 2 and 3 is due to partial digestion. 
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Antisense 

Days after polllnalon 

Fig. 2. (A) Inhibition of C2H, production in antisense fruits during ripening, and C,H, evolution in 
air- and CA-treated fruits. Mature green fruits from control (0, e), hctcroygous (El, B), and 
honmzygous (A, A) All.1 antisense plants were treated with air (open symbols) or with 1000 pJ of 
C3H, per litcr of air (solid symbols). Ethylene production was monitored daily (25). (B) Inhibition of 
the respiratory burst in antisense fruits. Respinmy CO, production was monitored in a control 
(45-day-old) and two homozygous antisense (70-day-old) fruits with C02-ficc air. At the arrow, one 
ofthe andsense fruits was placed in a stream of air containing 10 pJ of% per liter of air as described 
(25). 00, production was monitored with a Bcchnan hfhd analyzer. 

burst even when they are 95 days old (Fig. 
2B). Treatment with propylene (C,&) or 
GI& (13), which d e r a m  n o d  ripen- 
ing, rrverses the antisense phenotype in the 
absence of endogenous C2H, production 
(Fig. 2A), and dduced the respiratory rise 
(Fig. 2B) and the ripening process. Propy- 
lene- or C2&-ripened antisense fruits are 
i n # w h a b l e -  h m  naturally ripened 
fruits with respect to texture, color, aroma, 
and compressibility (11, 12). 

~ a t u r e ,  57-d@-old, green, antisense 
fruits express tACC2 antisense RNA (Fig. 
4), whereas control fruits do not. Treat- 
ment with air or C3& for 14 days doesnot 
alter the amount of antisense RNA. The 
expression of mRNAs from both ripening- 
induced ACC synthase genes, LE-ACC2 

and LE-ACC4 (9), is inhibited in antisense 
fruits treated with air or C3H6 (Fig. 4). 

The expression of two other- genes, 
TOM13 and that encoding polygalactu- 
ronase (PG) (14, IS), was also analyzed 
(Fig. 4). TOMU mRNA is first detected in 
control fruits at about 48 days, before ACC 
synthase &A is detectable, and expres- 
sion remains the same in air- or c;&- 
treated control fruits. In antisense f;;i&, 
TOM13 and PG mRNA expression is sim- 
ilar to that observed in control fruits. dem- 
onstrating that expression of both genes 
during ripening is C21&-independent. PG 
may therefore not be solely responsible for 
tomato fruit softening or may require the 
induction of a C21&-inducible factor or 
factors. Antisense RNA to PG does not 
prevent tomato fruit softening (16), and 
expression of active PG polypeptide in the 
tomato-ripening mutant rin does not result 
in fruit softeninp; (1 71. - .  - 

To daennine the duration of CzH, treat- 
ment required to reverse the antisense phe- 
notype, we treated mature, green fruits (49 
days old) h m  control and sntisense plants 
with GI& fbr 1, 2, and 19 days (Fig. 5). 
Antisense fruits treated for 1 or 2 days with 
C2H, did not develop a fully ripe pheno- 
type, as compared to control fruits treated 
similarly. However, antisense fruits treated 
fbr 15 days with C2H, ripen normally. The 
fruits become I l ly red (18) and soft after 7 
days of treatment. The GH,-mediated rip- 
ening process requires continuous transuip 
tion ofthe necessary genes (C3H, treatment 
for 1 or 2 days was not sufficient), which 

Fig. 3. Phenotype of the fruits used in Fig. 2A may reflect a short half-life of the induced 
The numbers indicate the age of the fruits in mRNAs or POb'FPtides. 
days- The short half-life of the ACC synthase 

Fig. 4. RNA hybndization analysis (26) of con- 
trol (A) and homozygous antisense fruits (B). 
The source of the RNAs were the fruits shown in 
Fig. 3. Lane 1, RNA isolated from control (48- 
day-old) and antiscnx: (55-day-oId), mature, 
green fruits. Lane 2, RNA fiom control and 
antisense fruits kept in air fbr 11 days. Lane 3, 
RNA fmm control and antisense fruits treated 
with 1000 p1 ofC3H, per lim of air for 14 days. 
The hybridizations were carried out with p b c s  
s p d c  fbr sense tACC2 RNA and antisense 
RNA (P035) and with tACCQ, TOM13, and PG 
double-- probes (9, 14, 15). 

polypeptide (25 min) (19) is probably an 
important factor for successful gene inacti- 
vaGon bv antisense RNA.  en& whose en- 
coded p&pePtides turn over rapidly may be 
inactivated by their antisense RNA more 
effectivelv. The inabilitv to inhibit tomato 
fruit sen;sCence by aniseme RNA of two 
other ripening-induced genes might be due 
to the longer half-life of the encoded poly- 
peptides (14, 16). 

These results demonstrate that C21& con- 
trols the dimacteric rise of respiration dur- 
ing fruit ripening and the -biochemical 
changes associated with it, such as dening ,  
color, and aroma development. The respira- 
tow burst is viewed as aedconxauence of the 
ripening process, which requires more ener- 
gy due to the neossary enhanced transuip- 
tion and protein synthesis (20). Ethylene 
production during ripening is indeed auto- 
catalytically regulated. However, the devel- 
opmental signals that initially induce ACC 
Synthase expression remain to be elu- 
cidated. The. mode of GH, action also 
remains a mystery. It has been suggested 
that because C3H, is an olefin, its receptor 
may be a metalloprotein (21), a viable prop 
osition in view of the fact that some marn- 
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2 1 days 

Fig. 5. Effect of C2H4 treat
ment on the antisense phe-
notype. Mature green fruits 
from control and homozy
gous antisense plants were 
harvested 49 days after pol
lination and treated with air 
for 15 days or with 10 \i\ of 
C2H4 per liter of air for 1,2, 
or 15 days and then re
turned to air (25). Fruits 
were photographed on day 
16 after harvesting. 

malian hormone receptors are both transcrip
tional activators and Zn2+ metalloproteins 
(22). Expression of antisense RNA to ACC 
synthase may ameliorate losses due to over-
ripening of fruits and vegetables during trans
portation or because of lack of refrigeration. 
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A 32-kD GTP-Binding Protein Associated with the 
CD4-p56lck and CD8-p56lck T Cell Receptor Complexes 
JANICE C. TELFER AND CHRISTOPHER E. RUDD* 

The guanosine triphosphate (GTP)-binding proteins include signal-transducing het-
erotrimeric G proteins (for example, Gs9 Gj), smaller GTP-binding proteins that 
function in protein sorting, and the oncogenic protein p21™*. The T cell receptor 
complexes CD4-p56lck and CD8-p56k* were found to include a 32- to 33-kilodalton 
phosphoprotein (p32) that was recognized by an antiserum to a consensus GTP-
binding region in G proteins. Immunoprecipitated CD4 and CD8 complexes bound 
GTP and hydrolyzed it to guanosine diphosphate (GDP). The p32 protein was 
covalently linked to [ce-32P]GTP by ultraviolet photoaffinity labeling. These results 
demonstrate an interaction between T cell receptor complexes and an intracellular 
GTP-binding protein. 

GTP-BINDING PROTEINS AFFECT 
the enzymatic activity of adenyl cy
clase, retinal cyclic guanosine 

monophosphate phosphodiesterase (GMP), 
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