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Reversible Inhibition of Tomato Fruit Senescence by

Antisense RNA

PauL W. OELLER, LU MIN-WONG, LOVERINE P. TAYLOR,*
DEBORAH A. PIKE,t ATHANASIOS THEOLOGIST

Bthylcne controls fruit ripening

. Expression of antisense RNA to the rate-limiting

enzyme in the bnosynthetlc pathway of ethylene, 1-aminocyclopropane-1-carboxylate
synthase, inhibits fruit ripening in tomato plants. Administration of exogenous
ethylene or propylene reverses the inhibitory effect. This result demonstrates that
ethylene is the trigger and not the by-product of ripening and raises the prospect that
the life-span of plant tissues can be extended, thereby preventing spoilage.

N PLANTS, RIPENING OF A FRUIT IS
I the prelude to senescence, the final

phase of development and differentia-
tion (1, 2). During ripening, climacteric
fruits, such as tomato and banana, undergo
marked changes in composition and texture
and have a burst of respiration (climacteric
rise) with a concomitant increase in ethylene
(C,H,) production (1, 3). Climacteric fruits
can be induced to ripen by treatment with
C,H, at concentrations above 0.1 pl of
C,H, per liter of air. Once ripening is
initiated, the endogenous C,H, production
rises autocatalytically (4). Ethylene affects
gene transcription in a variety of tissues (5),
and physiological evidence indicates that
C,H, is the natural ripening hormone (1, 6,
7). We now use antisense RNA to inactivate
the rate-limiting enzyme in the C;H, bio-
synthetic pathway and show that C,H, trig-
gers ripening and senescence of tomato (Ly-
copersicon esculentum) fruit.

The rate-limiting step in the synthesis of
C,H, is the conversion of S-adenosylme-
thionine to 1-aminocyclopropane-1-carbox-
ylic acid (ACC), the immediate precursor of
C,H,, a process that is catalyzed by the
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enzyme ACC synthase (4, 8). Induction of
C,H, production requires de novo synthesis
of this enzyme (8). ACC synthase is encoded
in tomato by a divergent multigene family,
two members of which are expressed dur-
ing fruit ripening (9). Full-length cDNAs
from the two genes, LE-ACC2 and LE-
ACC4, have been isolated and structurally
characterized (9).

We expressed antisense RNA derived
from the tACC2 cDNA of the LE-ACC2
gene constitutively in transgenic plants us-

ing the cauliffower mosaic virus (CaMV)
35S promoter (Fig. 1A). Thirty-four inde-
pendent transgenic tomato plants were ob-
tained, and three of them, All.l, All.4,
and A2, showed a marked inhibition in
C,H, production and delay in the onset of
fruit ripening. The strongest phenotype was
observed with fruits from the A11.1 trans-
formant, which was chosen for further anal-
ysis. All of the experiments reported here
have been carried out with homozygous
All.1 fruits from the second (R1) or third
(R2) generation of transgenic plants. South-
ern (DNA) blot analysis showed that A11.1
plants from the R1 generation (Fig. 1B)
contained an additional 1.7-kb DNA frag-
ment that segregated as a single locus (3:1
ratio). Comparison of the hybridization in-
tensities between the endogenous single-
copy LE-ACC2 synthase gene (9) and the
antisense gene indicates the presence of ten
antisense insertions per plant (Fig. 1B).
Control fruits kept in air begin to produce
C,H, 48 to 50 days after pollination, then
undergo a respiratory burst (10), and fully
ripen after ten more days (Figs. 2A and 3).
Ethylene - production was inhibited by
99.5% in antisense fruits, which fail to ripen
(Fig. 2A). The basal level of C,H, evolution
in antisense fruits is below 0.1 nl of C,H,
per gram of fruit mass per hour. The red
coloration resulting from chlorophyll degra-
dation and lycopene biosynthesis is also
inhibited in antisense fruits (11). A progres-
sive loss of chlorophyll from antisense fruits
is seen 10 to 20 days later than the loss is
seen in the control fruits, resulting in a
yellow color. Antisense fruits kept in air or
on the plants for 90 to 120 days eventually
develop an orange color but never turn red
and soft (12) or develop an aroma. Antisense
fruits in air do not show the respiratory

- . . <
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pPO35 I A

0.5 kb
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Fig. 1. Transformation of tomato plants with antisense ACC
synthase gene. (A) The antisense construct pPO35. The
e¢DNA sequence tACC2 of the LE-ACC2 gene (9) was
inserted in reverse orientation between the CaMV 358

promoter and the nopaline synthase (NOS) terminator into
the vector pBI101. Restriction sites are as follows: P, Pst I;

abas -

S, Sal I; B, Bam HI; E, Eco RI; and Sc, Sac I. Transcription

start is at +1.

(B) Southern blot analysis. Total DNA (5 pg)

from untransformed and transformed plants (23) (R1 gen- 1 2 3

eration)

was digested with Eco RI and Pst I and hybridized

(24) with a 657-bp fragment from the fourth exon of the LE-ACC2 gene. Lane 1, untransformed; lane
2, homozygous antisense; and lane 3, heterozygous antisense plants. Hybridizing fragments correspond
to the endogenous (LE-ACC2) gene at 3.0 kb and the antisense (PO35) gene at 1.7 kb. The 2.5-kb
hybridizing fragment in lanes 2 and 3 is due to parrial digestion.
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Fig. 2. (A) Inhibition of C,H, production in antisense fruits during ripening, and C,H, evolution in
air- and CzH-treated fruits. Mature green fruits from control (O, @), heterozygous (CJ, M), and
homozygous (A, A) All.1 antisense plants were treated with air (open symbols) or with 1000 pl of
C;Hj per liter of air (solid symbols). Ethylene production was monitored daily (25). (B) Inhibition of

the respiratory

burst in antisense fruits. Respiratory CO, production was monitored in a control

(45-day-old) and two homozygous antisense (70-day-old) fruits with CO,-free air. At the arrow, one
of the antisense fruits was placed in a stream of air containing 10 pl of C;H, per liter of air as described
(25). CO, production was monitored with a Beckman infrared analyzer.

burst even when they are 95 days old (Fig.
2B). Treatment with propylene (C;Hg) or
C,H, (13), which accelerates normal ripen-
ing, reverses the antisense phenotype in the
absence of endogenous C,H, production
(Fig. 2A), and induced the respiratory rise
(Fig. 2B) and the ripening process. Propy-
lene- or C,H -ripened antisense fruits are
indistinguishable from naturally ripened
fruits with respect to texture, color, aroma,
and compressibility (11, 12).

Mature, 57-day-old, green, antisense
fruits express tACC2 antisense RNA (Fig.
4), whereas control fruits do not. Treat-
ment with air or C;H for 14 days does. not
alter the amount of antisense RNA. The
expression of mRNAs from both ripening-
induced ACC synthase genes, LE-ACC2

Control
Air or C3Hg

Antisense

Air C3Hg

Fig. 3. Phenotype of the fruits used in Fig. 2A.
The numbers indicate the age of the fruits in
days.
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and LE-ACC#4 (9), is inhibited in antisense
fruits treated with air or C;Hg (Fig. 4).

The expression of two other genes,
TOM13 and that encoding polygalactu-
ronase (PG) (14, 15), was also analyzed
(Fig. 4). TOM13 mRNA is first detected in
control fruits at about 48 days, before ACC
synthase mRNA is detectable, and expres-
sion remains the same in air- or C;He¢-
treated control fruits. In antisense fruits,
TOM13 and PG mRNA expression is sim-
ilar to that observed in control fruits, dem-
onstrating that expression of both genes
during ripening is C,H,-independent. PG
may therefore not be solely responsible for
tomato fruit softening or may require the
induction of a C,H,-inducible factor or
factors. Antisense RNA to PG does not
prevent tomato fruit softening (16), and
expression of active PG polypeptide in the
tomato-ripening mutant rin does not result
in fruit softening (17).

To determine the duration of C,H, treat-
ment required to reverse the antisense phe-
notype, we treated mature, green fruits (49
days old) from control and antisense plants
with C,H, for 1, 2, and 15 days (Fig. 5).
Antisense fruits treated for 1 or 2 days with
C,H, did not develop a fully ripe pheno-
type, as compared to control fruits treated
similarly. However, antisense fruits treated
for 15 days with C,H, ripen normally. The
fruits become fully red (18) and soft after 7
days of treatment. The C,H -mediated rip-
ening process requires continuous transcrip-
tion of the necessary genes (C,H, treatment

“for 1 or 2 days was not sufficient), which

may reflect a short half-life of the induced
mRNAs or polypeptides.
The short half-life of the ACC synthase

tACC2

PO35
tACC4

TOM13

1 2 3 1 2 3

Fig. 4. RNA hybridization analysis (26) of con-
‘trol (A) and homozygous antisense fruits (B).
The source of the RNAs were the fruits shown in
Fig. 3. Lane 1, RNA isolated from control (48-
day-old) and antisense (55-day-old), mature,
green fruits. Lane 2, RNA from control and
antisense fruits kept in air for 11 days. Lane 3,
RNA from control and antisense fruits treated
with 1000 pl of C;Hj per liter of air for 14 days.
The hybridizations were carried out with probes
specific for sense tACC2 RNA and antisense
RNA (PO35) and with tACC4, TOM13, and PG
double-stranded probes (9, 14, 15).

polypeptide (25 min) (19) is probably an
important factor for successful gene inacti-
vation by antisense RNA. Genes whose en-
coded polypeptides turn over rapidly may be
inactivated by their antisense RNA more
effectively. The inability to inhibit tomato
fruit senescence by antisense RNA of two
other ripening-induced genes might be due
to the longer half-life of the encoded poly-
peptides (14, 16).

These results demonstrate that C,H, con-
trols the climacteric rise of respiration dur-
ing fruit ripening and the biochemical
changes associated with it, such as softening,
color, and aroma development. The respira-
tory burst is viewed as a consequence of the
ripening process, which requires more ener-
gy due to the necessary enhanced transcrip-
tion and protein synthesis (20). Ethylene
production during ripening is indeed auto-
catalytically regulated. However, the devel-
opmental signals that initially induce ACC
synthase gene expression remain to be elu-
cidated. The mode of C,H, action also
remains a mystery. It has been suggested
that because C,H, is an olefin, its receptor
may be a metalloprotein (21), a viable prop-
osition in view of the fact that some mam-
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Control

Antisense

Air

C,H, treated

Fig. 5. Effect of C,H,, treat-
ment on the antisense phe-
notype. Mature green fruits
from control and homozy-
gous antisense plants were
harvested 49 days after pol-
lination and treated with air
for 15 days or with 10 pl of
C,H, per liter of air for 1, 2,
or 15 days and then re-
turned to air (25). Fruits

15 2

malian hormone reocpoors are both transcrip-
tional activators and Zn?* metalloproteins
(22). Expression of antisense RNA to ACC
synthase may ameliorate losses due to over-
ripening of fruits and vegetables during trans-
portation or because of lack of refrigeration.
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A 32-kD GTP-Binding Protein Associated with the

CD4-p56'* and CD8-p56'* T Cell Receptor Complexes

JANICE C. TELFER AND CHRISTOPHER E. RUDD*

The guanosmc tnphosphane (GTP)-binding proteins
erotrimeric G pmtcms (for example, G,, G;), smaller GTP-binding proteins that

function in protein sorting,

and the o

include signal- transducing het-

ic protein p217™*. The T cell

complexes CD4-p56'* and CD8-p56'* were found to include a 32- to 33-kilodalton

phosphoprotein (p32) that was reeogmzed by an antiserum to a consensus GTP-
binding region in G protcins.

GTP and hydrolyzed it to

ipitated CD4 and CD8 complexes bound
guanosine diphosphate (GDP). The p32 protein was

covalently linked to [e->*P]GTP by ultraviolet photoaffinity labeling. These results
demonstrate an interaction between T cell receptor complexes and an intracellular
GTP-binding protein.

TP-BINDING PROTEINS AFFECT

the enzymatic activity of adenyl -
clase, retinal cyclic guanosine

monophosphate phosphodiesterase (GMP),
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