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Quantum Mechanical Calculations to
Chemical Accuracy

CHARLES W. BAUSCHLICHER, JR., AND STEPHEN R. LANGHOFF

Full configuration-interaction (FCI) calculations have
given an unambiguous standard by which the accuracy of
theoretical approaches of incorporating electron correla-
tion into molecular structure calculations can be judged.
In addition, improvements in vectorization of programs,
computer technology, and algorithms now permit a sys-
tematic study of the convergence of the atomic orbital (or
so-called one-particle) basis set. These advances are dis-
cussed and some examples of the solution of chemical
problems by quantum mechanical calculations are given
to illustrate the accuracy of current techniques.

HE YEAR 1970 HAS BEEN CITED (1) AS THE STARTING DATE
for the “third age of quantum chemistry,” as theory began
obtaining quantitative solutions to chemical problems. Since
that time, the number of problems for which theory has contributed
has grown dramatically. See, for example, the review by Schaefer (1)
where the success of theory is demonstrated on problems ranging
from aiding in the identification of interstellar microwave lines to
the prediction of ground-state structures, such as the 3B, state of
CH,. We contend that another large enhancement in the utility of
theory for solving chemical problems occurred in about 1987, as a
result of benchmark calculations that considerably enhanced our
understanding of the fundamental approximations used in standard
quantum mechanical approaches (2). This led to the observation
that the largest shortcoming of the theoretical treatment was often
the incompleteness of the atomic orbital (AO) basis, as opposed to
limitations in the treatment of electron correlation.
In this review, we present several examples of theoretical calcula-
tions that illustrate the accuracy of present-day molecular structure
calculations. It is, of course, impossible to describe all of the
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approaches in use today. Instead we limit the discussion to two
approaches. First is the coupled-cluster singles and doubles (CCSD)
method (3) with a perturbational estimate (4) of the contribution of
connected triple excitations [CCSD(T)]. Because the FCI method
(5-7) is not feasible for most systems, this is probably the most
accurate, practical single-reference approach in use today. Second,
we consider the multireference configuration-interaction (MRCI)
approach to the correlation problem. Size-extensive modifications,
such as the averaged-coupled pair functional (ACPF) approach (8),
further extend the applicability of the MRCI approach. Multirefer-
ence correlation treatments are generally the most accurate ap-
proaches, because they account for both dynamical and nondynam-
ical correlation. These approaches have been shown (2) to reproduce
FCI results for both the energy and molecular properties for a wide
range of molecular systems.

New Insight from Benchmark Calculations

Most quantum mechanical methods attempt to solve the time-
independent Schrédinger equation
AY =EV ()
where ¥ is the wave function, E is the energy, and H is the
Hamiltonian. Because the electrons are much lighter than the nuclei,
the electronic and nuclear motions are generally treated separately
(the Born-Oppenheimer approximation). Relativistic effects are also
neglected as they contribute little to valence properties. Although
theoretical work (9, 10) directed at understanding the limitations of
these two approximations has been reported, this is outside the
scope of this article. With these approximations the Hamiltonian
operator (in atomic units) can be written as

—-—Evl EEZArA,+ 2 '+ 2 ZaZpR3:
i>j=1

2)

where Z is the nuclear charge, r;; is the electron-clectron distance, 7.4,
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is the electron-nuclei distance, and R is the internuclear distance.
The four terms in Eq. 2 account for the electron kinetic energy, the
nuclear-electron attraction, the electron repulsion, and the nuclear
repulsion contributions, respectively. The summations extend over n
electrons and N nuclei in the system. The difference with classical
mechanics is apparent in the electron kinetic energy, where 1/2 my>
has been converted to a differential operator as a result of the small
electron mass.

The solution of the Schrodinger equation is very challenging,
even with the Hamiltonian operator in Eq. 2. Methods such as
Monte Carlo (11) are difficult to apply, because of the high precision
required. For example, the dissociation energy (D,) of N, (228
kcal/mol) is a small fraction of the total electronic energy of more
than 65,000 kcal/mol. Most quantum mechanical methods rely on a
two-step procedure. In the first step, the molecular orbitals (MOs)
are obtained as a linear combination of one-particle basis functions

ll’i = 2 Xp.Cp.i (3)
N

where the x,,s are commonly referred to as AOs. These AOs include
functions to describe the atoms as well as higher angular momentum
functions called a polarization functions to describe the distortion that
occurs as a result of bonding in molecules. The simplest approach to
obtaining the MO coeflicients C is the self-consistent-field (SCF)
approximation, where each electron is assumed to move in the average
field of all others. The occupied MOs are consistent with chemical
intuition: the core orbitals are very atomic-like, and the valence
orbitals can be classified as bonding orbitals or lone pairs.

Although insight into the bonding can often be achieved at the
SCF level, to achieve accurate energetics it is generally necessary to
account for the instantaneous interaction between the electrons in a
second step. The energy lowering relative to the SCF has been
termed the electron correlation energy. Most solutions to the
electron correlation problem also use an expansion technique, where
the basis functions are antisymmetrized (due to the fact that
electrons are fermions) n-fold products of MOs. These n-particle
functions are often termed configuration state functions (CSFs).
The correlation (or n-particle) problem can be solved exactly for a
given MO basis if all possible CSFs are included in the expansion—
an FCI calculation. However, because the n-particle basis set in the
FCI procedure has a factorial dependence on the number of
electrons and MOs, it rapidly becomes computationally intractable.
Three approximate methods of treating the correlation problem are
in common use: Moller-Plesset (MP) perturbation theory (12),
coupled cluster (CC) approaches, and CI approaches. [See (13) for
a more complete description of computational methods.] All of
these methods rely on truncating the CSF expansion. This is
generally done by restricting the number of MO replacements (that
is, single, double, triple, . . . replacements or excitations) relative to
either the SCF reference or a suitable multireference wave function.

Because most quantum mechanical solutions involve a double
basis set expansion, the differences between calculated and accurate
experimental quantities may arise from limitations in either expan-
sion. This fact underlies the importance of the FCI method, as for a
given AO basis it represents the exact solution of the correlation
problem and therefore provides an unambiguous standard with
which to compare approximate treatments of correlation. Although
this fact has been realized for some time, it is only recently that FCI
calculations in which realistic one-particle basis sets are used have
become possible. The development of highly eflicient algorithms (6,
7) for solving the FCI problem combined with computer architec-
tures such as the CRAY 2, with its very large central memory and its
ability to perform matrix multiplication at nearly 300 MFLOPS,
increased the size of the FCI problem that could be treated by more
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than an order of magnitude. This permitted a series of benchmark
calculations (2) not only for total energies but for a wide variety of
molecular properties. An important conclusion from the benchmark
studies was that a complete-active-space SCF (CASSCF) calculation
followed by an MRCI treatment accurately reproduced the FCI
results. The CASSCF method can be considered an extension of the
SCF method, where the most important correlation effects are
included in the MO optimization step. This approach defines a
reference wave function comprising the most important CSFs for
the MRCI procedure. In addition, the SCF-based CCSD(T) meth-
od and the analogous quadratic CI [QCISD(T)] method (14) have
been shown to give good agreement with the FCI, except for cases
(15) where the system is very multireference in character, such as
stretched bonds or transition-metal multiple bonds or in regions of
curve crossings. Thus, the FCI benchmark calculations indicated
that most of the discrepancy with experiment in many of the earlier
calculations was due to the truncation of the one-particle basis set
rather than the n-particle expansion.

The realization that a significant fraction of the remaining error in
high-quality ab initio calculations was due to the incompleteness of
the one-particle basis resulted in an impetus (16, 17) to develop
improved basis sets. The one-particle basis functions (or AOs) are
commonly composed of a linear combination of individual Gaussian
functions called primitives. The accuracy of the one-particle basis set
depends not only on the number and choice of primitives but also
on the contraction coeflicients that define the transformation from
primitives to AOs. The older basis sets were developed at the SCF
level, whereas the new one-particle sets are designed explicitly for
correlated calculations. One class of these has been termed atomic
natural orbital (ANO) basis sets (16), as the contraction coefficients
are determined from single and double configuration-interaction
(SDCI) calculations on atoms (or based on averaged sets for neutral
atoms and negative ions) using large primitive sets. Because the
occupation numbers of the natural orbitals of the SDCI are the
criterion for including the contraction in the basis set, these sets
could be systematically expanded to approach the one-particle limit.
Thus, it is possible to approach the complete CI result (the exact
result in the nonrelativistic limit and Born-Oppenheimer approxi-
mation) by carrying out an MRCI calculation to account for
electron correlation in a nearly complete one-particle basis. On the
basis of comparison with FCI calculations in a smaller but realistic
basis, the MRCI calculation is expected to accaunt for all important
valence correlation effects. The assumption of a small coupling
between the one- and n-particle expansions is generally good for
properties that depend on the energy but may be suspect for
properties such as hyperfine coupling constants (2).

As an example of FCI benchmark studies, we present in Table 1
the results of a study (18, 19) of the energy separation between the
' A, and ®B, states in methylene. In the upper portion of the table
we compare the separations computed by using approximate corre-
lation methods with the FCI result in a double-zeta plus polarization
(DZP) quality basis set. The error is very large at the SCF level
because the ®B, state is much better described by one reference
configuration than is the 'A4, state. Although the error is signifi-
cantly less at the SDCI level, the separation is still not within
chemical accuracy (=1 kcal/mol). If an estimate for higher than
double excitations is made by using either the Davidson’s correction
(Q) (20) or the coupled pair functional (CPF) method (27), the
error is reduced to less than 1 kcal/mol. However, the CASSCFE/
MRCI treatment is in nearly exact agreement with the FCI. Thus, a
CASSCF/MRCI calculation, in which a nearly complete one-particle
basis set is used, should produce a separation in excellent agreement
with the accurate experimental value (22).

In the lower portion of Table 1 we show the effect of systemati-
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Table 1. Theoretical study of ' 4,-®B, separation in CH, (kcal/mol). The
error is the difference from the FCI value.

Method Separation Error

Calibration of n-particle treatment in a small basis set
SCF 26.14 14.17
SCF/SDCI 14.63 2.66
SCE/SDCI+Q 12.35 0.38
CPF 12.42 0.45
CASSCE/MRCI 11.97 0.00
FCI 11.97

Calibration of one-particle treatment at MRCI level
[3s 2p 1d/2s 1p] 11.33
[4s 3p 2d 1f3s 2p 1d] 9.66
[5s 4p 3d 2f 1g/4s 3p 2d] 9.24
Experiment + theory (T,) 9.28 (=0.1)

cally expanding the one-particle basis set. (The notation indicates
the number and type of contracted ANO functions on C and H,
respectively.) Because the separation decreases with improvement in
the one-particle basis set, several sets of polarization functions are
required to achieve very accurate results. The valence limit is
estimated to be about 9.1 kcal/mol, on the basis of the convergence
of the separation with basis set. This value is slightly less than the
energy separation neglecting zero-point motion (T,) deduced (22)
from the experimental adiabatic value (T) and the experimental and
theoretical zero-point corrections. This discrepancy is due mostly to
the effects of inner-shell (C 1s) correlation, which has been estimated
(19) to increase the separation by 0.35 kcal/mol.

Unlike the CH, example described above, it is not always possible
to investigate the convergence of the one-particle basis set with the
use of a correlation treatment that accurately reproduces the FCI
result. Thus, it may be necessary to add the effect of expanding the
one-particle basis (at a moderate level of correlation treatment) to
the result obtained at a high level of correlation treatment in a
modest-sized basis set. Again we stress that this is often a good
approximation for total energies, but not necessarily so for molecular
properties. A notable example of this approach is the G2 theory of
Pople and co-workers (23). [The G2 approach is an improved version
of the G1 method (24).] In the G2 approach the QCISD(T) method
is used to solve the n-particle problem accurately, and MP methods are
used to determine the one-particle basis set correction. Large basis set
calculations are possible because the MP2 method has been imple-
mented with an approach that requires little disk space.

New Problems Solved by Calculations

C-H bond energies. The value for the C-H bond dissociation
energy in acetylene, Do(HCCH-H), is controversial, primarily be-
cause of several disparate experimental values (25-29). Before 1989,
kinetics experiments (25) gave a value between 124 and 127
kcal/mol, while the photodissociation and photoionization experi-
ments of Lee and co-workers (26) gave a value of about 132
kcal/mol. In 1989, the photodissociation experiments of Segall et al.
(27) were interpreted in terms of a bond energy of 127 = 1.5
kcal/mol, and the Stark anticrossing spectroscopy experiment of
Green et al. (28) was interpreted as showing an upper bound of
126.647 kcal/mol. However, these values were inconsistent with
another highly accurate measurement of 131.3 + 0.7 kcal/mol by
Ervin et al. (29), who used the techniques of negative-ion photo-
electron spectroscopy and gas-phase proton transfer kinetics.

Because current theoretical methods are capable of computing
C-H bond dissociation energies to an accuracy of about 1 kcal/mol,
attempts were made to resolve this controversy theoretically (30—
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33). Curtiss and Pople (30) calculated the bond energy using the G1
approach. Their value of 133.5 + 2.3 kcal/mol favored the higher
experimental values, but the uncertainties (due to limitations in the
empirical corrections inherent in the Gl method) precluded a
definitive resolution. More recently, several additional theoretical
studies have been performed. Calculations by Bauschlicher et al.
(31), using the CPF and CASSCF/MRCI approaches and extensive
one-particle basis sets, gave a D, value of 130.1 = 1.0 kcal/mol,
where the error bars represent 90% confidence limits. The theoret-
ical calculations of Montgomery and Petersson (32) used the
QCISD(T) method. As in the two other theoretical studies, they
were able to estimate the remaining errors in the one-particle basis
set. Their value of 131.54 kcal/mol (with an estimated error of 0.51
kcal/mol based on the root-mean-square error in the bond energies
of other molecules) is in excellent agreement with the theoretical
value of Bauschlicher ef al. (31).

Because the heats of formation of C,H, and C, are well known,
the C-H bond dissociation energy of acetylene can be deduced from
an accurate C-H dissociation energy of C,H. We determined (34)
the C-H energy in C,H to be 112.4 = 2.0 kcal/mol, in excellent
agreement with the very recent experimental value (35) of 112.0 =
0.8 kcal/mol. The sum of our C-H bond energies for C,H, and
C,H is in excellent agreement with the difference in the heats of
formation of C, and C,H,. Thus the theoretical calculations rule
out the lower experimental determinations of the C-H bond
dissociation energy of acetylene. This work is presently being
extended to the C-H bond energies of other hydrocarbons in order
to improve the thermodynamic basis of combustion models.

Vibrational frequencies of O;. Another area where quantum me-
chanical calculations have made great progress in the past few years
has been in the calculation of vibrational frequencies of polyatomic
molecules (36). Because the changes in the molecule with a bond
stretch or bend are much smaller than for bond breaking, quantita-
tive results are often obtained even at the SCF level. This is
significant as efficient codes are available to determine analytically
the first, second, and third derivatives of the energy with respect to
nuclear motion (37). However, to obtain good agreement with the
experimental frequencies, it is necessary to account for both corre-
lation and anharmonicity effects. We illustrate the current state of
the art in this area by reviewing work on the O; molecule (38),
which is challenging theoretically because of the biradical character
of the ' A, ground state.

The vibrational levels of O are poorly described at low levels of
theory, resulting in an incorrect ordering of the symmetric and
antisymmetric stretching frequencies in many cases. Although the
CASSCF method provides the correct ordering and reasonably
good frequencies, the subsequent MRCI calculation is prohibitively
expensive in a high-quality one-particle basis set. However, the
single reference—based CCSD(T) method gives remarkably good
agreement with experiment (39). The CCSD(T) geometry agrees
with experiment to within 0.001 A and 0.3°. The computed
fundamental vibrational frequencies v are in error by only 2 cm™!
for the symmetric stretch and bend. Even the antisymmetric stretch,
which has eluded quantitative theoretical treatment, is in error by
only 67 em™'. The theoretical (experimental) values are: v, (a;) =
1105(1103), v,(a,) = 699(701), and v4(b,) = 975(1042) cm™*.
Because the CCSD approach without the perturbational estimate of
the triple excitations has errors that are 200 cm™" larger, the triples
estimate must be included for accurate results. Because CCSD(T)
analytic derivatives are available (40), we expect this method to have
great utility for many other molecular systems.

The Lewis-Rayleigh afterglow and the Hermann infrared system of N,.
The Lewis-Rayleigh afterglow of N, is known to occur through a
three-body recombination of ground-state N atoms followed by
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collisional energy transfer. Because most of the emission originates
from the first positive bands (B*II, — A>Z;" and the B3II, state does
not dissociate to ground-state atoms, a precursor state must be
involved. In the 1950s two theories were proposed with respect to
the identity of the precursor state. The A'>Z, state was proposed to
be the precursor of the Lewis-Rayleigh afterglow in the theory of
Berkowitz, Chupka, and Kistiakowsky (41). This theory was criti-
cized by Campbell and Thrust (42) on the basis that the A2 state
was too shallow to support an appreciable steady-state population
based on the then-accepted value (43) of 850 cm ™" for the well depth.
They invoked instead the 433 state as the precursor. However, on
the basis of MRCI calculations in an extended one-particle basis set,
we computed (44) a A'5Z; potential with a well depth of 3450 cm™*,
a barrier to dissociation of about 500 cm™, and a van der Waals
minimum of about 47 cm™'. The larger well depth removes the
objection to A'5E;" as the precursor state for the afterglow.

Kumar and Kumar (45) have studied the relative vibrational
intensities of the first positive system in the afterglow spectra of N,
in the range from 1900 to 8000 A at 77 and 300 K. As the
temperature is lowered from 300 to 77 K, the overall intensity of the
bands increases and there is a shift in the relative intensities with the
maximum emission occurring from the v' = 12 instead of the v’ =
11 level of the B®IL, state. As the temperature is further decreased to
that of liquid helium, the afterglow occurs primarily from only the
v’ = 6 level (46). Figure 1 shows the BIl,, A*S), and A’}
potential curves and their vibrational levels in the region of interest.
The states are colored to facilitate distinguishing the vibrational
energy levels. We were able to use these potentials to explain the
variation in the emission from the B’Il, state as a function of
temperature. At 300 K the maximum intensity originates from the
v’ = 11 level, because the A'5Z; state is vibrationally relaxed before
intersystem crossing to the B’ilg state, and the lowest vibrational
level of the 4’53} state most efficiently crosses to the v’ = 11 level
of the B?II, state. At 77 K, an outer van der Waals well in the A’
state (not shown in Fig. 1) allows for tunneling to the higher
vibrational levels of the inner well of the A'Z state. Because there
are fewer collisions at this temperature, intersystem crossing to the
v' = 12 level of the BII, state is more rapid than collisional
relaxation, causing the maximum intensity in the B3IL, state emis-
sion to increase from v’ = 11 to v’ = 12. At 4 K the barrier in the
A’ state leads to a cutoff in the emission from v’ = 10 to 12.
However, the A’5Z} state has no barrier and therefore it can
populate the BT state even at 4 K. The A2} and B*II, potential
curves cross at v = 16 in the A’5Z] state and v’ = 6 in the B*II,
state, thereby giving a maximum in emission for the v' = 6 level of
the BIL, state at 4 K. The barrier in the A'5Z] state yields a
quasi-bound level that allows intersystem crossing to v’ = 13 of the
B[], state, thus explaining why this level has the same population
mechanism as v' = 12, even though v' = 13 is above the
dissociation limit.

The Hermann infrared system (HIR) of N2 observed (47) in the
region from 700 to 970 nm had eluded assignment for nearly 40
years. Carroll and Sayers (48) were able to determine that the HIR
bands result from either a triplet or quintet transition. Furthermore,
from the work of Nadler et al. (49) it was known that the HIR
system is readily generated by the energy pooling reaction between
metastable N,(A'>Z;}) molecules, which demands that the upper
state be less than 12.02 eV above the ground state. In addition,
positions of four vibrational levels of the upper and five of the lower
state were known. This later fact precluded assigning 45X as the
lower state of the transition, because it was inconsistent with a well
depth of only 850 cm™'. However, our recent theoretical A'5%
state potential produced vibrational spacings in excellent agreement
with the observed ones. Given this fact, it was straightforward to
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assign (44) the HIR band system to the C"*II, = A'*Z; transition.
Recently this assignment has been confirmed spectroscopically by
Huber and Vervloet (50).

This example demonstrates that theory is capable of assigning and
predicting new band systems. Theoretical calculations for band
strengths and radiative lifetimes are also approaching quantitative
accuracy. For example, calculations (51) for the radiative lifetime of
the OH ultraviolet system are accurate to 5%, which is sufficient to
discriminate between conflicting experimental determinations. Fur-
ther examples of the utility of theory for predicting spectra of both
diatomic and polyatomic molecules can be found in a recent review
article (52).

Identification of the ground state of Al, and Si,. Undl recently the
ground state of Al, was not known. The three states, *2, *II,,, and
137, that dissociate to the 2P(3s*3p) ground state of Al atom were
all proposed as candidates. Although qualitative theoretical calcula-
tions (53) were able to exclude the 12; state, the two triplet states
were too close in energy to definitively assign the ground state.
However, we used extensive MRCI calculations (54) calibrated
against FCI benchmarks and extensive one-particle basis set calibra-
tions to predict a *II, ground state, despite a A®3;-X>II, separa-
tion of only 174 cm™". This is remarkable considering that 10 years
ago a computed separation of 1000 cm~* would not have been
considered definitive. Recent experiments (55, 56) have confirmed
that Al, has a *I1, ground state, but the A3%_ excitation energy has
not yet been measured.

Another important molecule for which the ground state was not
known until recently is Si,. Although valence isoelectronic with C,,
which has a 'S} ground state, the much weaker multiple bonding in
Si, precludes a 'S ground state. Instead, by analogy with Al,, the

‘<\> va =32
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Fig. 1. Potential energy curves and vibrational levels for the A3X}, A'SZ},
and B®II, states of N, drawn in blue, green, and red, respectively. The
vibrational levels of the B®II state are calculated using the Wentzel-Kramers-
Brillouin formalism and the A’SZ} levels are the quantum mechanical values
from table VII of (44).
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two lowest electronic states are °II, and *Z,. The *Z,-°II,
separation is sensitive to the level of treatment, so that extensive
theoretical calculations are required for definitive results. Liithi and
McLean (57), using an extended basis set and accounting for
electron correlation at the MRCI level, found that the 32(; state lies
522 cm ™! below ®IL,. They then corrected this number on the basis
of analogous calculations for C, where the separation is well known.
This led to a triplet separation of 180 + 200 cm™" for Si, with the
*%, state lower. However, the use of C, as a calibrant is question-
able. The different bonding in C, and Si, is reflected by the fact that
the *Z; state of C, lies 5718 cm™" above the *II, state.

In our investigation (58) of the triplet separation in Si,, we carried
out a systematic study of the effect of improving the one-particle
basis set and used FCI benchmark calculations to calibrate our
MRCI treatment of electron correlation. Our best estimate for the
A’IL~XZ, separation was 440 = 100 cm™', with a value more
likely in the upper half of the range. Recently, Neumark and
co-workers (59) determined a value of 669 + 80 cm ™! for the triplet
separation on the basis of photodetachment experiments on Si, .
These values are in reasonable agreement considering that our upper
bound and their lower bound differ by only 50 cm ™. This again
illustrates that very accurate energy separations can be computed if
performed in conjunction with calibration calculations for the
completeness of both the one- and n-particle expansions.

Concluding Remarks

In this review we have stressed that by combining basis set
saturation studies, which assess the convergence of the one-particle
basis, and FCI calculations, which assess the completeness of the
n-particle expansion, molecular wave functions of unprecedented
accuracy can be obtained. Theoretical benchmark calculations have
shown that the CASSCF/MRCI approach accounts for all of the
important valence correlation effects and have also shown that
shortcomings of earlier calculations were often a result of limitations
in the one-particle, as opposed to the n-particle, expansion. This
observation was the impetus for the development of new basis sets,
such as those based on ANOs. The benchmark calculations have also
shown that another promising technique for including electron
correlation is the CCSD(T) approach. Although not as accurate as
MRCI techniques, it is a single-reference method that can therefore
be applied to larger problems or used with larger one-particle basis
sets than are feasible to use with MRCI techniques.

The rapid advance in computer hardware is one of the factors
contributing to the success of computational chemistry. The recent
development of reduced instruction set computer (RISC) architec-
ture, such as in the IBM RS/6000, is contributing to this success by
reducing the cost of computing and increasing the number of
scientists with sufficient computational resources to carry out accu-
rate calculations.

We have illustrated the increased accuracy that is presently
achievable with quantum mechanical methods with several exam-
ples. We expect that the higher accuracy of present-day calculations
will allow for an even greater interplay between theory and experi-
ment in the future.
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