
particular flexible segment can contribute to 
site-specific DNA binding. The arm clearly 
has an important role in the A repressor- 
operator interactions. The extent to which 
such segments are used in DNA binding 
may be underestimated, since some flexible 
segments may lack the sequence similarities 
that facilitate the study of well-structured 
DNA binding motifs. 
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Structure and Stability of X-G-C Mismatches in the 
Third Strand of Intramolecular Triplexes 

Intramolecular DNA triplexes that contain eight base triplets formed &om the folding 
of a single DNA strand tolerate a single X.G.C mismatch in the third strand at acidic 
pH. The structure and relative stability of all four triplets that are possible involving a 
G.C Watson-Crick base pair were determined with one- and two-dimensional proton 
nuclear magnetic resonance techniques. Triplexes containing A-G-C, G.G.C, or T.GC 
triplets were less stable than the corresponding parent molecule containing a C.G.C 
triplet. However, all mismatched bases formed specific hydrogen bonds in the major 
groove of the double helix. The relative effect of these mismatches on the stability 
of the triplex differs from the effect assayed (under different conditions) by 
two-dimensional gel electrophoresis and DNA cleavage with oligonucleotide 
EDTAeFe(I1). 

T RIPLE HELICAL NUCLEIC ACID 

structures formed from one ho- 
mopurine and two homopyrimidine 

RNA sequences were proposed more than 
30 years ago (1). Recent evidence indicates 
that such DNA sequences may also fold back 
on themselves to form intramolecular tri- 

Department of Chemistry and Biochemistry and Molec- 
ular Biology Institute, University of California, Los 
Angeles, CA 90024. 

plexes, termed H-DNA ( Z ) ,  when contained 
in supercoiled plasmids; moreover, these 
structures may be relevant in vivo (3). Tri- 
plex formation is currently being widely 
investigated because of potential therapeutic 
applications in the specific inhibition of 
transcription (4) and for use.in chromosome 
mapping ( 5 ) .  Proposed models for 
pyrimidine-purine-pyrimidine PNA triplex- 
es have the second pyrimidine strand 
Hoogsteen base-paired to purines in the 
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major groove of Watson-Crick base-paired 
duplex DNA (or RNA) (6, 7). The base 
pairing schemes for T.A.T and CC.G.C trip- 
lets in pyrimidine-purine-pyrimidine DNA 
triplexes and the parallel orientation of the 
third strand relative to the purine strand 
have been unambiguously confirmed by our 
nuclear magnetic resonance (NMR) studies 
(8, 9). However, there is some evidence that 
DNA triplexes containing other base triplets 
can be formed (10-15). The extent to which 
other base triplets can form or be accornrno- 
dated within this pyrimidine-purine-pyrimi- 
dine triple helical motif is not well under- 
stood. We report our investigations of the 
base pairing schemes for third strand X.G.C 
misktches and their effect on the stabilitv 
of intramolecular triplexes formed from the 
folding of a single DNA strand. 

We synthesized oligonucleotides with the 
sequences shown in i g .  lA, where X de- 
notes C, A, G, or T. These 32-base oligo- 
nucleotides are designed to fold into intra- 
molecular triplexes at acidic p H  as shown in 
Fig. lA, with the 5' purines (1-8) forming 
Watson-Crick base pairs with the central 
pyrimidines (13-20) and Hoogsteen base 
pairs with the 3' pyrimidines (25-32). A 
related 28-base sequence does form a stable 
intramolecular triplex containing T-A-T and 
C.G.C triplets under appropriate conditions 
(9, 16). For this study, we lengthened the 
triplex by one triplet and changed one of the 

loops from TIT to TATA in order to in- 
crease the thermal stability of the triplex. 
One-dimensional spectra of the exchange- 
able resonances of the four oligonucleotides 
at pH 5.2 are shown in Fig. 1. The parent 
oligonucleotide, with X = C, is shown in 
Fig. 1B. Resonance intensity for 16 
H-bonded imino resonances and the non- 
H-bonded imino resonances in the TATA 
loop and CC amino resonances are ob- 
served. All of the imino and amino reso- 
nances have been assigned by analysis of 
nuclear Overhauser kffect spectroscopy 
(NOESY) (1 7) spectra to Watson-Crick A.T 
and G.C and Hoogsteen T.A or CC.G base 
pairs in base triplets as described (8, 9). The 
exchangeable proton spectra obtained for 
the oligonucleotides with X = A, G, or T are 
shown in Fig. 1, C, D, and E, respectively. 

The observation of more than the eight ., 
Watson-Crick imino protons expected if 
only the partially folded duplex formed, plus 
resonance intensity at the characteristic 
chemical shift of CC aminos, is strongly 
indicative of triplex formation (8, 9, 18). 
Triplex formation for all of the oligonucle- 
otides containing the alternative bask triplets 
A-G.C, G.G.C, and T.GC was confirmed by 
analysis of two-dimensional NOESY spectra 
in H 2 0  and D20 .  The assignments for the 
imino and amino resonances are given in 
Table 1. In addition to the imino resonances 
observed for the standard T.A.T and Cf .G.C 

Fig. 1. (A) Sequence and 
folded conformation of the 
oligonucleotides investigat- 
ed. The X indicates the po- A A22 
sition at which the bases A, 
G. T. or C were substituted. 
(B &rough E) One-dimen- 
sional 500-MHz 'H NMR 

lminos I 

triplets, an additional imino resonance is 

spectra of the exchangeable 
proton resonances at 1°C are 
shown for (B) X = C, (C) X 

observed for each oligonucleotide, which we 
have identified as arising from the base X = 
A, G, or T. These are labeled in Fig. 1 and 
are discussed below. Thus, all of the oligo- 
nucleotides form intramolecular triplexes at 
p H  5.2 and 1°C, indicating that a single 
mismatch in the Hoogsteen base-paired 
strand can be accommodated in the forma- 
tion of a nonstandard X.G.C triplet. 

The H-bonding scheme for the X.G.C 
triplets was determined b; analysis of 
NOESY spectra in H 2 0 .  A portion of the 
NOESY spectrum of the oligonucleotide in 
H 2 0  in which X = A is shown in Fig. 2. 

= A, (D) X = G, and (E) X C + - G - C  
= T. All NMR samples were 
2 mM DNA strand, 100 
mM NaCI, 5 mM MgCI,, C 
pH 5.2, 400 ~1 in 90% 
H20-10% D20. DNA oli- 
gonucleotides were synthe- 
sized and purified and NMR 
samples were prepared as 
described (9) .  Assignments D 
of the imino protons of X 
are as indicated. The assign- 
ments of all of the resonanc- 
es shown are iven in Table 5 1. Complete H resonance 
assignments of (B) have E 
been obtained (27). Spear? 
were obtained with a 11 
spin echo pulse sequence 
(28) (7 = 90 to 100 FS). T - G - C  
Spectra were acquired with I I I I a I a ' 
4,096 complex points, 256 l6 14 12 10 P P ~  
acquisitions, and a spectral width of 12,048 to 12,396 Hz. Spectra were processed with GE NMR 
software (GEM16) and line-broadened by 3 Hz before Fourier transformation. 

I 

This spectrum shows several features-that 
are characteristic of triplex DNA containing 
T.A.T and Cf.G.C triplets (8, 9, 18, 19), 
and these characteristics are used in making 

Amlnos (Ct, At) 

assignments (see below). Another character- 
istic feature of triplex DNA is nuclear Over- 
hauser effect (NOE) cross peaks between the 
Hoogsteen base-paired iminos and the 5' 
neighboring purine deoxyribose H-2', H - 2  
resonances; NOE cross peaks between imi- 
nos and H-2', H - 2  are never observed in 
duplex DNA. The imino resonances are 
assigned from the two sets of sequential 
imino-imino connectivities along the Wat- 
son-Crick and Hoogsteen base-paired 
strands (Fig. 2A, above and below the diag- 
onal, respectively). Depending on the X.GC 
base pairing scheme and the relative strength of 
any H bonds formed, these sequential connec- 
tivities might be disrupted at the X G C  triplet. 
For X = A, no sequential connectivity between 
T29 and the imino assigned to A28 is o b  
served, although there is one between T27 and 
A28. Although adenine is not normally proto- 
nated at N-1, observation of this very low 
field-shifted imino resonance is one indication 
that there is a protonated H-bonded adenine 
imino in the A G C  triplet. Similar low field 
shifts are observed for the CC iminos in DNA 
triplexes. The CC iminos are identified by their 
characteristic NOES to the CC arninos (Fig. 
2C). Although only two sets of C+ amino 
resonances are expected, three ses of cross 
peaks appear in this region. The additional pair 
of amino resonances arises from the amino 
group of A28. Their unusual low field chemical 
shift can be attributed to protonation of A28 at 
N-1. 

The observation of the AC imino and two 
resolved amino resonances indicates that A28 
forms specific H bonds from the imino and one 
amino proton to the Watson-Crick G4 . C1Z 
base pair. On the basis of model building, we 
conclude that the sterically most favorable base- 
pairing scheme is that shown in Fig. 3B. This 
base-pairing scheme is confirmed by observed 
NOE cross peaks between the A28 iinino and 
the C17 amino resonvces k d  between the 
A28 imino and G4H-8 and A28H-2. The 
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G4H-8 and A28H-2 resonances also show a 
strong NOE cross peak in NOESY spectra in 
D,O. Although the pK, of adenosine N-1 is 
-3.9 (20), which is even lower than that for 
cytosine, protonated adenines in GA mis- 
matches contained in duplex DNA have been 
reported both in crystal structures (21) and 
solution (22) at low pH. 

The base pairing schemes for the G-G-C 
and T-G.C triplets contained in the oligonu- 
cleotides with X = G and T, respectively, 
were determined by the same methods as 
those for X = A discussed above. The irnino 
proton of G28 in the X = G oligonucleotide 
resonates in the same region as the iminos 
from the thymines in the loop (Fig. ID), 
indicating that the irnino proton is not 
H-bonded, although it is somewhat protect- 
ed from solvent exchange. The NOESY 
spectrum for this oligonucleotide in H,O 
shows i strong NOE cross peak between the 
G28 imino and amino resonances. This 
cross peak, although broad because of the 
usual fast rotation around the C-N bond for 
the guanine aminos, indicates that one of the 
two amino protons must be H-bonded. The 
proposed base pairing scheme for the G-G-C 
triplet is given in Fig. 3C. Although we 
cannot determine unambiguously which 
amino proton is H-bonded to the C-6 car- 
bonyl, model building indicates that the 

Table 1. Chemical shifts (ppm) of H-bonded 
imino and C+, A+ amino resonances of 
intramolecular triplexes at l0C.* 

Triplex X = 
Base pair 

C A G T 

14.23 14.04 
14.79 14.90 
13.64 13.62 
15.22 15.58 
12.52 13.26 
15.88 11.101 
12.62 13.22 
15.69 14.51 
12.97 13.40 
12.22 12.46 

A+ aminos 
9.20 9.18 

10.05 9.93 
8.95 
9.43 
9.40 9.45 
9.97 10.04 

*Chemical shifts were determined by reference to the 
chemical shift of H,O, which had been previously cali- 
brated relative to DSS. tG28 imino is not H 
bonded. *Lower field resonance in each pair is H 
bonded. 

base pairing scheme shown is sterically more 
favorable in terms of the phosphodiester 
backbone. This H-bonding scheme is similar 
to the scheme proposed by Griffin and Der- 
van (10) for the G.T.A triplet in that both 
schemes involve a single H bond between an 
amino proton from the guanine in the third 
strand and a carbonyl group in the Watson- 
Crick base pair. However, our investigations 
of the G-T-A triplet contained within the 
intramolecular triplex indicate that in this 
case the H bond is to the other amino 
proton (23). The G-G-C H-bonding scheme 
differs from that suggested by Kohwi and 
Kohwi-Shigematsu (13) for their proposed 
dG;dG;dC, triplex. This is not surprising, 
however, given the proposed antiparallel 
orientation for their second purine strand. 

The imino proton for T28 in the X = T 
oligonucleotide resonates at about 12 ppm 
(Fig. lE), indicating that it is H-bonded. 
This shift is upfield of the usual chemical 
shift range for Watson-Crick A.T iminos but 

is in the range where Hoogsteen base-paired 
thymine iminos are observed (8, 9, 18, 19, 
24). This T28 imino shows a strong NOE 
cross peak to G4H-8, which confirms the H 
bond to G4N-7. The base pairing scheme 
deduced for the T-G.C triplet is shown in 
Fig. 3D. The triplex containing the A+.G.C 
triplet shows the largest difference in chem- 
ical shifts compared with the parent X = C 
and the other oligonucleotides. This may 
indicate some distortion in the helix tb 
accommodate this mismatched triplet. 
, The data given above show that intramo- 

lecular triplexes containing a single X-G-C 
mismatch do form. However, these mis- 
matches do have a significant effect on the 
thermal stability of the triplexes formed. 
One can qualitativelv monitor the relative 
stabilities *of the &iplexes by obtaining 
NMR spectra of the exchangeable resonanc- 
es as a function of tem~erature. On the basis 
of such data, the order of decreasing stability 
for the four triplexes and therefore for the 

Fig. 2. Portion of NOESY 
spectrum in 90% 
H20-10% D 2 0  of the oli- 
gonucleotide with X = A at 
1°C. The boxed regions con- 
tain cross ~ e a k s  be-tween (A) I I 

\ ,  

imino-imino, (B) imino-ar- 
omatic, amino, and (C) Cf 
aminos and A+ aminos. The 
sequential imino-imino con- 
nectivities are indicated by 
the solid lines in (A) for the 
Watson-Crick base pairs 
(above the diagonal) and the 
Hoogsteen base pairs (be- 
low the diagonal). Connec- 
tivities between the two A+ 
amino resonances are indi- 
cated by solid lines in (C). 
Cross imino peaks and the between aromatic the and A+ 7 - 
amino proton resonances 
that define the base pairing 
scheme are labeled in (B). 
The cross peaks from 
G4H-8 and A28H-2 could 
be distinguished by compar- 
ison to spectra obtained af- 
ter deuteration of the purine 
H-8s (8, 9). Cross peaks be- 
tween A28 amino and C17 
amino resonances are 
starred (*). Assignments of 
the imino and amino reso- A+N-1 
nances are given in Table 1. 1 
Assignments were made as P P ~  
described (9, 27). Some ad- 
ditional cross peak intensity that arises from a minor, unidentifiedjorm of the oligonucleotide can be 
seen in (A) and (B). The NOESY spectrum was acquired with a 11 spin echo pulse sequence (T = 90 
ILS) replacing the third pulse of a standard NOESY sequence as described (9) .  Acquisition parameters 
were 2,048 complex points in t,, 256 t ,  values, 96 acquisitions per t ,  value, sweep width of 12,346 Hz, 
recycle delay of 2 s, and mixing time of 100 ms. The spectrum was processed with the program FTNMR 
(Hare Research). Before Fourier transformation the free-induction decays (FIDs) were corrected by a 
Gaussian window function with K = 32 and extrapolation with M = 16 (29) to remove the residual 
water signal. The 256 points were processed in both dimensions, and the spectrum was zero-filled in t ,  
to give a final 2048 by 2048 real data matrix and was apodized in both dimensions by a skewed, sine-bell 
squared (skew = 1.5) function with a 60" phase shift. 
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Fig. 3. H-bonding schemes for the A 
(A) C+.G.C, (B) A+.G.C, (C) 
G-G.C, and (D) T.GC triplets with- 
in the intramolecular triplex, as de- 
termined from the NMR studies, 
where the third strand is parallel to 
the homopurine strand. NOESY 
spectra in D,O (not shown) 
showed that all of the bases were in 
the anti conformation. 

H 

four different triplets at pH 5.2 is C+.G.C 9 
A+.G.C > G.GC > T.G.C. The stabilities of 
the four triplexes were also monitored opti- 
cally as a function of temperature (Fig. 4). 
The melting profile for oligonucleotide X = 
C at pH 5.2 shows a single cooperative 
transition with a melting point T, of 68°C 
rather than the biphasic transitions that have 
been reported elsewhere for DNA triplexes 
(24-26). The melting profile of the oligonu- 
cleotide at pH 8.7, where it is predominant- 
ly the partially folded duplex (9), also shows 

a single but broader transition with a Tm of 
62°C (Fig. 4A). This result is consistent 
with our previous NMR work that showed 
that third strand binding stabilized the Wat- 
son-Crick duplex in triplexes formed from 
d(GA), + 2 d(TC), (8). 

Apparently the formation of the intramolec- 
ular mplex &creases the melting temperature of 
this oligonucleotide above that of the partially 
folded duplex, with the result that as soon as 
the third strand begins to dissociate the rest of 
the molecule also mels. This melting behavior 

Fig. 4. Graphs of absorbance at 0.80 
264 nm versus temperature for the 
oligonucleotides. (A) Melting pro- 
files of oligonucleotide X = C at 0.75 
pH 5.2 ana pH 8.7. Oligonucleo- 
tide is triplex at pH 5.2 and pre- 0.70: 
dominantly the partially folded du- 
plex at pH 8.7. (B) Melting profiles 0.65 : 
of olieonucleotides X = C. A. G. 
and f a t  pH 5.2. The T,,, 'for'thk 
triplexes are 68°C (X = C), 44" and 
64°C (X = A), 34" and 64°C (X = 8 
G), and 32" and 63°C (X = T). At 0.55 
pH 8.7, T, for X = C is 62°C. f! 
Absorbances were measured on an 

0 . ~ ~ 0  

HP 8452A diode array spectropho- 2 OBO 
tometer. A blank was run for each 
melting study and was subtracted 0.75 
from the baseline. The spectra in 
(B) were normalized to the same 0.70 
starting intensity. We determined 
the melting temperature of the oli- 
gonucleotide X = C by fitting the 0.65 
absorbance as a function of temper- 
ature with a two-state model (30) 0.60 
with the nonlinear least squares re- 
gression program BMDP3R 0.55 
(BMDP Statistical Software, Los 0 10 20 30 40 50 60 70 80 90 
Angeles, California). A three-state 
model did not give reasonable re- 

T("C) 

sults for oligonucleotide X = C. In contrast, the X = A, G, and T oligonucleotide melung profiles fit 
well with a three-state model (26) and did not give reasonable results when fit with a two-state model. 

will dearly depend on both salt and pH. In 
contrast to the parent oligonudeotide, the oli- 
gonucleotide with the T-GC mismatch does 
show a biphasic melting profile, which is best 
fit with a three-state model. This analysis gives 
two melting transitions, Tm = 32°C and 63"C, 
corresponding to the melting of the Hoogsteen 
and the Watson-Crick basgpaired strands, re- 
spectively. The melting profile of the G G C  
oligonucleotide is also best fit by a three-state 
model with Tm = 34°C and 64°C. For the 
A.GC oligonucleotide, the two'transitions are 
Tm = 44°C and 64°C. Thus, all of the mis- 
matches decrease the stability of third strand 
binding in the order given above at pH 5.2. 

The relative effect of X-GC triplets on the 
formation and stability of DNA triplexes has 
been probed by different methods in-two other 
laboratories, with differing results from each 
other and this study. Belotserkovskii et at. (12) 
assayed for H-DNA formation by two-dirnen- 
sional gel electrophoresis at pH 4.2 in plasmids 
containing potential H-DNA-forming se- 
quences with a single X.Y.Z mismatch. Plas- 
mids containing T.GC and A G C  mismatches 
required two &d G G C  required three more 
superhelical turns to convert to H-DNA than 
did plasmids with the canonical T.A.T or 
C-GC triplets at the same position. Griffin and 
Dervan (10) assayed for relative stabilities of 
triplex formation at pH 7.0 in 15-base-long 
T.A.T triplexes with a single X;Y.Z mismatch 
by putting the DNA-cleaving moiety thymi- 
dine EDTA.Fe(I1) on the third strand. Triplex- 
es containing X.Y.Z = ,T.A-T, CGC, and 
GT-A showed a relative cleavage efficiency of 
30 to 35%, those containing T-GC were 
cleaved at 10 to 15%, and G G C  and A.GC 
showed less than 5% cleavage. 

The difference in stability of the triplexes 
with an A.GC mismatch in these three assays 
can easily be explained by the difference in 
at which the assays were done. However, both 
the Frank-Kamenetskii and the Dervan assays 
show a higher relative stability for triplex& 
containing a single T.GC mismatch than those 
in our study, which indicates that T.GC is the 
least stable of the triplexes. Although we are 
unable to explain this difference a t  time, 
our results on the relative effect of X.GC 
triplets on the formation and stability of DNA 
triplexes point up the importanc.e of pH, sol- 
vent conditions, and base composition in de- 
termining the potential effect of alternative base 
triplets on triplex formation and stabity. 
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The v-akt oncogene codes for a 105-kilodalton fusion phosphoprotein containing Gag 
sequences at its amino terminus. Sequence analysis of v-akt and biochemical charac- 
terization of its product revealed that it codes for a protein kinase C-related 
serine-threonine kinase whose cellular homolog is expressed in most tissues, with the 
highest amount found in thymus. Although Akt is a serine-threonine kinase, part of its 
regulatory region is similar to the Src homology-2 domain, a structural motif 
characteristic of cytoplasmic tyrosine kinases that functions in protein-protein inter- 
actions. This suggests that Akt may form a functional link between tyrosine and 
serine-threonine phosphorylation pathways. 

T HE AKT8 VIRUS (I), THE ONLY 

acute transforming retrovirus isolat- 
ed from a rodent T cell lymphoma 

(AKR) to date, transforms mink lung cells 
in culture. Virus rescued from nonproducer 
mink cells by two poorly leukemogenic arn- 
photropic murine leukemia viruses was in- 
oculated into newborn mice and shown to 
be tumorigenic (2). A defective clone of the 
AKT8 virus clone contained v-akt, a gene of 
cellular origin (3). The presumed human 
homolog of v-akt was cloned by screening a 
human genomic DNA library with a virus- 
derived probe under conditions of reduced 
stringency (3), and it was mapped to chro- 
mosome 14q32, proximal to the imrnuno- 
globulin heavy chain locus (4), a region 
frequently affected by translbcations and in- 
versions in human T cell leukemia or lym- 
phoma, mixed lineage childhood leukemia, 
and clonal T cell proliferations in ataxia 
telangiectasia (5) .  The putative AKT gene 
was amplified in a human gastric carcinoma 
(3). The molecular characterization of a 
nondefective AKT8 virus clone presented 
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here reveals that Akt is a protein kinase C 
(PKC)-related serine-threonine kinase 
whose noncatalyuc domain contains a Src 
homology-2 (SH2)-like region. This smc-  
turd feature suggests that Akt may form a 
functional link between tvrosine and serine- 
threonine phosphorylation pathways. 

We cloned the AKT8 proviral DNA from 
AKT8-transformed mink lung cells using a 
Moloney murine leukemia virus (M-MuLV) 
long terminal repeat (LTR) probe. A restric- 
tion map of the integrated AKT8 provirus is 
shown in Fig. 1. Hybridization of restric- 
tion endonuclease-digested AKT8 DNA to 
a M-MuLV probe representing the entire 
viral genome identified a nonhybridizing 
region of possible cellular origin included in 
a 3.5-kb Bgl 11-Sma I DNA fragment. 
Sequence analysis of this fragment, which 
we-expected to contain the tk sduced  cel- 
lular oncogene (Fig. 2), revealed that AKT8 
has sequences from a mink cell focus-form- 
ing virus and the gene encoding Akt. The 5' 
recombination breakpoint maps at nucleo- 
tide 785 from the gag ATG codon in the 
region coding for the capsid protein p30. 
The 3' recombination breakpoint maps at 
nucleotide 298 from the env ATG codon in 
the region coding for the env gene product 
gp70. The v-akt gene codes for a 763-amino 
acid protein (86 kD) generated by the fu- 

partial genomlc library "of 
Eco RI4gested DNA 
from AKT8-transformed LTR 

Fig. 1. Restriction endonu- ~ c o  FII 
s s t  I  

Eco Rl 
clease map and structural or-  ma I Qn I  s a c  II ~ p n ~  ~ p n ~  s m a 1 Q n 1  

mink lung cells. The Bgl 11- ATG TGA 
Sma I fragment shown in I kb 

bold was sequenced. (Bot- gag-* A-env 
tom) Structure of the AKT8 provirus. The wavy lines at both ends represent the cellular DNA 
sequences flanlung the provirus. The hatched bar represents v-akt, which is subdivided into 5' 
gag-derived and 3' c-akt4erived segments. ATG and TGA define the beginning jind the end of the v-akt 
open reading frame. 
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