
We propose that sna allows twi to h c -  
tion as a mesodermal determinant by re- 
pressing the expression of sim (16), AS-C 
(1 O), E(sp1) (25), and other regulatory genes 
responsible for the differentiation of the 
mesectoderm and neuroectoderm. In sna 
embryos, ventral cells that normally form 
mesoderm now express the wrong regulato- 
ry genes, and consequently follow an alter- 
native fate. 

Note added in proof Similar results on the 
role of sna in mesoderm formation have 
been obtained (25a). 
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and rates of removal: 

M = F ~ - R ~ ~ ~ ~ C = F ~ - R ~  

Then, for example, a A $ a ~  = aFM/aM - 
dR,/aM. Let +,, and p,, be the orders of 
reaction for F, and R,, respectively, with 
respect to X,  for example, 

rates of change in these concentrations. For Then, because F, = R, and Fc = Rc at the 
a closed trajectory around a single critical critical point, 
point [that is, a point (M,C) where M = c 
= 01, the Poincart theorem requires aMlaM = (FM/M)(+MM - PMM) 

and Eas. 1 and 2 become 

at the critical point. A sufficient condition 
(+MC - PMC)(~CM - PCM) > 0 (3) 

for instability at the critical point is and 

a M / a ~  + aclac > o FC (') % (+MM - PMM) + y (+cc - pee) > 0 
These equations can be restated in terms of M . ., 
orders and rates of reaction at the critical (4) 

point, the order of reaction with respect to In the Norel and Agur model, pMc = 
X being defined as (X/V)(dV/dX), where V = +, = 0, and +,, = p, = 1; so 
is the reaction rate. So defined, reaction Eqs. 3 and 4 become 
order may depend on concentration and 
must be evaluated at the critical ~ o i n t  for (+MM - PMM)PCC < 1 (5) 

our present purposes. The rates of change of and 
M and C in the Norel and Agur model are MFc 

(+MM - PMM) > - 
the differences between rates of formation F& 

(6)  
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Fig. 1. MoGcations of the 
model of Norel and Agur. The 1 
curves show changes in M and 3 
C concentrations over time (in 
all cases M has the larger oscil- 8 2 
lations) [see (1) for units]. (A) 
First order rem&al of M, re- 8 1 
moval of C &st order with re- - 
spect to C. Differential equa- 01 0 20 40 60 80 
uons: M = (e + N ) C  - gM, Time 

' -00 
C = i - MC; parameter values 
e = 2.88, f = 3.0,g = 6.6, i = 
1.32: critical ~ o i n t  M = 1.2. C 4~ B 
= 1.1; initialitate M = 1.19; C 
= 1.09. (B) First-order autoca- 

tions: M = (e + f M)C - gM/ 
(M + l), C = i - MC; param- 20 40 60 80 -00 

eter values e = 2.4, f = 4.8,g = Time 
16.456, i = 1.32; critical point 
M =' 1.2, C = 1.1; initial state 
M = 1.19, C = 1.09. (C) Sta- C 

b h t i o n  of the critical point of ' 5 the original Norel and Agur E 2 
model by a competitive antago- 8 
nist of M remqval. Differential S 1 - 
equations (1): M =. (e + fM2)C O - 
- gM/(M + h), C = i - M; 
parameter values e = 3.5, f = 20 40 60 80 ' 9 0 0  
1.0,g = 10.0, i = 1.2. For time Time 
t < 30 time units, h = 1 (no 
competitive antagonist); for t 2 30, h = 2 (competitive antagonist present at a concentration equal to 
its dissociation constant). Initial state (a point on the limit cycle of the original model) M = 
2.10004647, C = 1.16628822. 

To satisfy Eq. 6, +,, must be greater than 
p,, (assuming pcc 2 0); but neither Eq. 5 
nor Eq. 6 bars first-order removal of C (p,, 
= 1) or M (p,, = 1); nor is it necessary 
that the autocatalytic order +,, exceed 1, 
provided p,, < +,,. 

Finding a set of parameters to demon- 
strate oscillation is straightforward. Take the 
case where both removal reactions are first 
order, that is R, = gM, Rc = MC, and 

To match approximately the values of the 
Norel and Agur model, set M = 1.2 and C 
= 1.1 at the critical point; then to satisfy Eq. 
7 let M2/[(e/ f )  + M ~ ]  = 0.6, making elf = 
0.96. In the steady state, F, = R,, that is 
(e +fM2)c = gM; therefore 

Letg = 6.6; then f = 3.0 and e = 0.96f = 
2.88. Finally, F, = R,, that is i = MC = 

must be less than first order with respect to 
M so as to satisfy pMM < +,, (Eq. 6). The 
case where R, = gM/(M + 1) and R, = 
MC is shown in Fig. 1B. 

Equations 3 and 4 might be used to 
suggest what external interventions could be 
effective in altering stability. For the model 
of figure 1A of Norel and Agur ( I ) ,  $, = M 
and p,, = 0, and therefore Eq. 6 becomes 

(+MM - PMM) > 0 (8) 
This might be invalidated either-by decreas- 
ing +,, or by increasing p,,. Because 

+,, can be decreased by an agent that 
either decreases the ratio f/e or decreases M 
(which, in this model, can only be done by 
decreasing i). Alternatively, pMM can be 
increased (to a maximum of 1) by a compet- 
itive antagonist of M removal; and, if +,, 
< 1, then Eq. 8 can be invalidated and 
instability abolished. With a competitive 
antagonist, R, = gM/(M + h) and p,, = 
h/(M + h), where h = 1 in the absence of the 
antagonist and is increased by addition of 
the antagonist (4) (Fig. 1C). 

These remarks concern only the stability 
at the critical point and do not challenge the 
conclusions of Norel and Agur on the main 
question of the modulation of cell cycle 
duration. 

C. D. THRON 
Department of Pharmacology and Toxkology, 

Dartmouth Medual School, 
Hanover, NH 03756 

REFERENCES AND NOTES 

1. R. Norel and 2. Agur, S c h e  251, 1076 (1991). 
2. J. Higgins, Ind .  Eng. Chem. 59 (no. 5), 18 (1967). 
3. Although it is easy enough to find parameter sets 

that give oscillations, some sen give rise to nwes 
with sham extrema that are troublesome to comDute 

p,, = p,, = 1. Because +,, < 2 in the 1.32. Oscillations with these parameter val- by numeAcd integration: 

Norel and Agur model, Eq. 5 is satisfied. ues are shown in Fig. 1A (3). 4. This model, with R, = M, is easy to analyze because 
the critical point value of M is unaffected by changes 

Equation 6 becomes In the same way, parameter values can be in h. In other cases, for example where R= = MC/(C 
found for the case where the autocatalytic + k). the effect of h on the right-hand side of E ~ .  6 

M must be taken into account. 
(7) 

term is at most first order with respect to M, 
that is, F, = (e +fM)C. In this case, R, 8 May 1991; accepted 15,July 1991 




