Functional Subunit Structure of Voltage-Gated Calcium Channels

WILLIAM A. CATTERALL

V OLTAGE-GATED CALCIUM CHANNELS MEDIATE CA^{2+} INflux into cells in response to depolarization of the plasma membrane. They are responsible for initiation of excitationcontraction and excitation-secretion coupling, and the Ca^{2+} that enters cells through this pathway is important in regulation of protein phosphorylation, gene transcription, and other intracellular events. The activity of voltage-gated Ca^{2+} channels is modulated by a wide variety of cell surface receptors acting through G proteins and protein phosphorylation. The transverse tubule membrane of skeletal muscle has an unusually high density of voltage-gated Ca^{2+} channels. Purification from this source identified α , β , and γ classes of Ca^{2+} channel subunits (1), and studies of the biochemical properties and functional reconstitution of purified skeletal muscle Ca^{2+} channels (2) have pointed to a complex multisubunit structure for this protein (Fig. 1A) (3).

In the skeletal muscle Ca^{2+} channel, a central transmembrane α_1 subunit (175 kD) is thought to be associated with four other polypeptides (3). The disulfide-linked α_2 (143 kD) and δ (27 kD) subunits are transmembrane glycoproteins as is the γ (30 kD) subunit, which is noncovalently associated with the other subunits. The hydrophilic β subunit (54 kD) is intracellularly disposed. This subunit structure is surprisingly complex and was initially controversial (2). Recent results in this issue of *Science* (4), in *Nature* (5, 6), and in press in the *Journal of Biological Chemistry* (7) more clearly define the structure of this oligomeric complex and suggest essential roles for its constituent subunits in the function of Ca²⁺ channels.

A combination of protein chemistry and complementary DNA cloning experiments have defined the primary structures of all five subunits of the skeletal muscle Ca²⁺ channel (8) and the cardiac α_1 subunit (9) (Fig. 1B). The α_1 , β , and γ subunits are encoded by separate genes. The α_2 and δ subunits are encoded by the same gene and are linked by disulfide bonds and proteolytically cleaved in post-translational processing reactions. The points of interaction among these subunits are not known, but their specific association as a complex is supported by copurification (1–3) and by coimmuno-precipitation with antibodies directed against the α_1 , α_2 , β , and γ subunits (3, 10).

Although the Ca²⁺ channel is an oligomeric structure, the α_1 subunit alone is able to function autonomously in some respects. Complementary DNAs or the corresponding messenger RNAs encoding muscle α_1 subunits can direct expression of functional voltage-gated Ca²⁺ channels in recipient *Xenopus* oocytes or mammalian L cells (9, 11), and can restore both Ca²⁺ currents and excitation-contraction coupling in myocytes from mice having the *muscular dysgenesis* mutation, which disrupts the endogenous α_1 gene (12). What are the roles of the other subunits of the Ca²⁺

channel complex? The new work (4–7) employs coexpression methods to provide intriguing, but still incomplete, answers.

Although expression of α_1 subunits in *Xenopus* oocytes or L cells yields voltage-activated Ca²⁺ currents, the amount of current and the number of high-affinity binding sites for dihydropyridine Ca²⁺ channel blockers are very low, and the time course and voltage dependence of Ca²⁺ channel gating differ sharply from those of the native channels. Coexpression of α_2/δ , β , and γ subunits corrects many of the functional defects of the α_1 subunits expressed alone and increases the amount of Ca²⁺ current dramatically for cardiac α_1 expressed in *Xenopus* oocytes. However, the functional effects of the α_2/δ , β , and γ subunits depend on the α_1 subtype and the recipient cell under investigation.

Skeletal muscle α_2/δ subunits substantially increase the amount of Ca^{2+} current in *Xenopus* oocytes expressing cardiac α_1 subunits (4, 9). Coexpression of α_2/δ also accelerates activation of the channel significantly and both accelerates and shifts the voltage dependence of inactivation toward more negative membrane potentials (4). The combination of α_2/δ and β , but neither subunit alone, shifts the voltage dependence of Ca^{2+} channel activation to more negative membrane potentials (4). In contrast to these dramatic effects of α_2/δ on cardiac α_1 expressed in oocytes, relatively little effect of α_2/δ coexpression is observed on skeletal muscle α_1 subunits expressed in L cells (5).

Skeletal muscle β subunits have dramatic effects on the functional expression of both skeletal muscle and cardiac α_1 subunits (4–7). Coexpression of β subunits in L cells accelerates activation and inactivation of skeletal muscle α_1 subunits more than tenfold (5, 6). Coexpression with cardiac α_1 subunits in *Xenopus* oocytes greatly increases the Ca²⁺ current and accelerates activation and shifts its voltage dependence to slightly more negative membrane potentials (4, 7).

Skeletal muscle γ subunits have only modest effects on expression of the skeletal muscle α_1 subunit in L cells (5). However, they increase the expression, accelerate inactivation, and substantially shift the voltage dependence of inactivation to more negative membrane potentials for cardiac α_1 in *Xenopus* oocytes (4). The γ subunit determines the inactivation properties of the cardiac α_1 subunits expressed in oocytes no matter what other subunit combination is present.

Overall, these results show decisively that efficient expression of Ca^{2+} channels with normal physiological properties is greatly enhanced by coexpression of all five of the subunits previously identified as components of the oligomeric Ca²⁺ channel complex. The α_2/δ , β , and γ subunits can each act in combination with either cardiac or skeletal muscle α_1 subunits to increase expression and to restore some aspect of normal channel function. Evidently, each of these subunits can interact directly with the α_1 subunit as suggested by the subunit structure in Fig. 1A and can modify α_1 expression and functional properties. Moreover, coexpression of the full complement of subunits is required for the cardiac Ca2+ channel to generate Ca²⁺ currents with a normal time course and voltage dependence (4); this finding implies that the five-subunit oligomer is indeed the physiologically functional Ca²⁺ channel. Thus, the new molecular biological studies nicely complement the previous biochemical work to define the functional subunit structure of the L-type Ca²⁺ channel.

Should the effects of these subunits be considered modulatory, structural, or functional? If the actions of the α_2/δ , β , and γ subunits are primarily to modulate or to provide an appropriate environment for α_1 subunit function, one would expect that their effects might differ for different α_1 subunits and for different cellular environments. On the other hand, if these subunits are direct functional participants in voltage-dependent gating and Ca²⁺ conductance and

Department of Pharmacology, University of Washington, Seattle, WA 98195.

Fig. 1. Subunit structure of skeletal muscle calcium channels. (**A**) A model of the subunit structure of the skeletal muscle Ca^{2+} channel derived from biochemical experiments (*3*). P, sites of cAMP-dependent protein phosphorylation; Ψ , N-linked glycosylation. (**B**) Transmembrane folding models of the Ca^{2+} channel subunits derived from primary structure determination and analysis (*8*). Cylinders represent predicted α -helical segments in the transmembrane regions of the α_1, α_2

carry out some aspect of these functions themselves, one would expect that the effects of the α_2/δ , β , and γ subunits would be similar or identical when expressed with different α_1 subunits or in different cellular environments. Because each of the subunits has a different functional effect on skeletal muscle α_1 subunits expressed in L cells compared to cardiac α_1 subunits expressed in Xenopus oocytes (4-7), it seems most likely that these auxiliary subunits are not direct participants in voltage-dependent gating and ion conductance. Instead, they are probably required for the normal function of the α_1 subunit to promote its native structure and to modulate its functions. Since the β subunit is a site of phosphorylation by multiple protein kinases (2), its modulation of α_1 subunit function may reflect physiological regulation through phosphorylation pathways. This interpretation of the coexpression results is consistent with current views of the structure and function of the voltage-gated Na⁺ and K⁺ channels in which voltage-gating, drug-binding, and poreforming elements are all located in the subunits homologous to α_1 (13).

Multiple Ca²⁺ channel subtypes have been described with different physiological and functional properties. At least four physiologically distinct types are expressed in neurons (14). Do all Ca²⁺ channel subtypes have a similar functional subunit structure? Several recent results suggest that they may. L-type, dihydropyridinesensitive Ca²⁺ channels in mammalian brain have α_1 -, α_2/δ -, and β -like subunits (15). N-type, ω conotoxin–sensitive Ca²⁺ channels in mammalian brain also have α_1 , α_2/δ , and β -like subunits (16). The expression of a recently cloned dihydropyridine- and ω conotoxin– insensitive Ca²⁺ channel α_1 subunit in *Xenopus* oocytes is dramatically enhanced by coexpression with α_2/δ and β subunits from skeletal muscle (17). Although still fragmentary, these results suggest that the complex oligomeric structure of the skeletal muscle L-type Ca²⁺ channel may be recapitulated in most Ca²⁺ channel

 δ , and γ subunits and in the peripherally associated β subunit. The transmembrane folding patterns are derived from hydropathy analysis only for $\alpha_2 \delta$ and γ and from a combination of hydropathy analysis and analogy with the current models for the structures of Na⁺ and K⁺ channels (13) for α_1 . The transmembrane arrangement of $\alpha_2 \delta$ is not well defined by hydropathy analysis and the indicated structure should be taken as tentative.

subtypes. The tissue- and cell-specific functions of Ca^{2+} channels may depend not only on which α_1 -like subunit they express, but also on their expression of specific α_2/δ -, β -, and γ -like subunits.

REFERENCES

- 1. B. M. Curtis and W. A. Catterall, Biochemistry 23, 2113 (1984).
- W. A. Catterall, M. J. Seagar, M. Takahashi, J. Biol. Chem. 263, 3535 (1988); H. Glossman and J. Striessnig, Rev. Physiol. Biochem. Pharmacol. 114, 1 (1990); M. M. Hosey and M. Lazdunski, J. Membr. Biol. 104, 81 (1988); K. P. Campbell, A. T. Leung, A. H. Sharp, Trends Neurosci. 11, 425 (1988); F. Hofmann, H. J. Oeken, T. Schneider, M. Sieber, J. Cardiovasc. Pharmacol. 12, S25 (1988); P. L. Vaghy, E. McKenna, K. Itagaki, A. Schwartz, Trends Pharmacol. Sci. 9, 398 (1988).
- M. Takahashi, M. J. Seagar, J. F. Jones, B. F. Reber, W. A. Catterall, Proc. Natl. Acad. Sci. U.S.A. 84, 5478 (1987).
- 4. D. Singer et al., Science 253, 1553 (1991).
- 5. G. Varadi, P. Lory, D. Schultz, M. Varadi, A. Schwartz, Nature 352, 159 (1991).
- 6. A. E. Lacerda et al., ibid., p. 527.
- 7. X. Wei et al., J. Biol. Chem., in press.
- T. Tanabe et al., Nature 328, 331 (1987); S. B. Ellis et al., Science 241, 1661 (1988); P. Ruth et al., ibid. 245, 1115 (1989); S. D. Jay et al., ibid. 248, 490 (1990); K. S. De Jongh, C. Warner, W. A. Catterall, J. Biol. Chem. 265, 14738 (1990).
- 9. A. Mikami et al., Nature 340, 230 (1989).
- A. T. Leung, T. Imagawa, B. Block, C. Franzini-Armstrong, K. P. Campbell, J. Biol. Chem. 263, 994 (1988); A. H. Sharp and K. P. Campbell, *ibid.* 264, 2816 (1989); M. K. Ahlijanian, R. E. Westenbrock, W. A. Catterall, *Neuron* 4, 819 (1990); A. T. Leung, T. Imagawa, K. P. Campbell, J. Biol. Chem. 262, 7943 (1987).
- 11. E. Perez-Reyes et al., Nature 340, 233 (1989).
- 12. T. Tanabe, K. G. Beam, J. A. Powell, S. Numa, ibid. 336, 134 (1988).
- H. R. Guy and F. Conti, Trends. Neurosci. 13, 201 (1990); C. Miller, Science 252, 1092 (1991); W. A. Catterall, Curr. Opinion Neurobiol. 1, 5 (1991); R. MacKinnon, ibid. 1, 14 (1991).
- 14. B. P. Bean, Annu. Rev. Physiol. 51, 367 (1989).
- 15. M. K. Ahlijanian, R. E. Westenbroek, W. A. Catterall, Neuron 4, 819 (1990).
- M. K. Ahlijanian, J. Striessnig, W. A. Catterall, J. Biol. Chem., in press; M. Pragnell, C. J. Leveille, S. D. Jay, K. P. Campbell, Biophys. J. 59, 390a (1991).
- 17. Y. Mori et al., Nature 350, 398 (1991).