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Autoassociation and Novelty Detection by 
Neuromechanics 

Many biomechanical systems contain ball joints with several elastic actuators (muscles) 
obliquely attached to the links. The problem of calculating the optimum actuator 
commands to achieve a desired link orientation is a difficult one for any control system; 
however, the elasticity of the actuators may be part of the solution. Mechanoreceptors 
such as those found in muscles and tendons are capable of performing operations that 
can be regarded as autoassociation and novelty detection, respectively, by minimization 
of potential energy. The information provided by such sensors may then be exploited 
for optimization of muscle coordination. 

J OINTS I N  BIOMECHANICAL SYSTEMS 

are usually moved by muscles attached 
to the links. Such muscles are elastic, so 

a given motor command does not result in a 
unique muscle length or torque. The ar- 
rangement of muscles in space is oblique, so 
the direction of movement generated by one 
muscle is affected by the activation of anoth- 
er muscle, and the number of muscles is 
always greater than the number of degrees 
of freedom of the joint, so there is a contin- 
uum and hence an infinite number of possi- 
ble motor commands for achieving a given 
movement of a link. As a result, it seems 
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difficult to find a procedure that yields an 
optimal pattern of motor commands for any 
desired orientation of the link. The informa- 
tion provided by sensors located in the 
elastic actuators can help to solve this coor- 
dination problem, if the system incorporates 
operations similar to autoassociation and 
novelty detection. 

Autoassociation has been shown to exist 
in multiunit systems that allow for "multi- 
lateral" or long-range interactions, such as 
simulated neural networks interacting 
tl~rough synapses ( I ) ,  spin glasses interact- 
ing through electromagnetic fields (Z ) ,  elec- 
tronic circuits interacting through connec- 
tions (3 ) ,  or optical systems interacting 
through photons (4). I will show that the 
interactions between elastic actuators, such 

as muscles, acting on a common rigid body, 
combined with suitable receptors, such as 
mechanoreceptors, provide the basis for au- 
toassociation and novelty detection. Among 
vertebrate muscle systems, the muscles ro- 
tating the eyeball expose these properties 
particularly clearly: there are six springlike 
muscles attached to a common rigid body, 
each muscle richly endowed with muscle 
receptors ( 5 )  and tendon receptors ( 6 )  that 
increase their activity upon mechanical 
stretch of the "parent" muscle. 

To keep the treatment as simple as possi- 
ble and to arrive at a linear characterization 
of the mappings, I used a first-order approx- 
imation (7) of the system behavior in the 
vicinity of a particular operating point. Thus 
an orientation change of the rigid body can 
be represented by a three-dimensional (3-D) 
vector 6e, the direction of which is the axis 
of rotation and the length of which is a 
measure of the angle of rotation (8). The 
angular elongations 6p, of the n individual 
muscles are obtained from the scalar product 
of the direction of orientation change 6e 
with the unit directions of muscle action, 
and they may be written 

where M is a 3 x n matrix, the columns of 
which are formed by the n unit directions of 
rotations that could be caused by individual 
muscles, and the superscript.T denotes the 
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matrix transpose. The negative sign results, 
because muscles are shortened when the 
rigid body is turned in their direction. If the 
change of torque 6f; exerted by the ith 
muscle is assumed to be the sum of an active 
component and a passive component, a lin- 
ear approximation reads 

where Sm, are the motor command changes 
to the muscles andA and Z are diagonal n x 
n matrices that contain the coefficients of 
elastic stiffness and neuromuscular transmis- 
sion, respectively. The potential energy 
change AE of a muscular system in the 
absence of external torques is given by the 
sum of two scalar products 

where L represents an elastic load, a tensor 
expressed in terms of a 3 x 3 matrix (9). In 
a stable equilibrium of the neuromechanical 
system, the condition of vanishing gradient 
of E yields 

Solving the coupled set of vector Eqs. 1, 
2, and 4 for Se as a function of Sm yields 

The introduction of two more simplifying 
assumptions clarifies the meaning of this 
expression. First, the rotatory stiffness coef- 
ficients of the muscles are assumed to be 
approximately equal, so the diagonal matrix 
becomes proportional to the identity matrix, 
A = d. Second, it is assumed that in all 
directions the stiffness of the muscles is 
considerably larger than the stiffness of non- 
muscular tissue, so the load tensor can be 
approximated by a zero matrix, L = 0. 
Under these conditions, Eq. 5 simplifies to 

Here the superscript "plus" denotes the 
Moore-Penrose generalized inverse (1 0) 
(MPGI). The MPGI exists for any matrix 
and is identical to the proper inverse, if the 
latter exists. 

In the derivation of the dependences of 
receptor signals on the motor commands it 
is important to note that two classes of 
receptors have been observed: the length 
receptors located parallel to the muscles that 
monitor the individual elongations (muscle 
receptors) and the tension receptors located 
in series to the muscles that monitor the 
individual torques (tendon organs). Com- 
bining the respective transduction coeffi- 
cients of these receptors into diagonal ma- 
trices X and Y yields 

Fig. 1. Projections implemented by the neurome- 
chanics of the human eye. The upper matrix 
describes the autoassociation produced by length 
receptors; the lower matrix describes the novelty 
detection produced by tension receptors in the 
extraocular muscles. Measureme~lts of the spatial 
arrangement of extraocular muscles were taken 
from Volkmann (14) (I.r., lateral rectus; m.r., 
medial rectus; s.r., superior rectus; i.r., inferior 
rectus; so . ,  superior oblique; and Lo., inferior 
oblique). 

for tension receptor signals Sw and length 
receptor signals Su. 

Combination of Eqs. 1, 6 ,  and 8 leads to 

The term between the diagonal matrices Y 
and Z is an orthogonal projection operator 
on the space spanned by the columns of MT. 
This result is important for two reasons. 
First, because MT is identical to [(MT) + ] +, 
the image space happens to be the space of 
"optimal" input vectors to the motor sys- 
tem, as described by Eq. 6 ,  where "optimal" 
means that the activity changes have mini- 
mal norm, and thus motor command com- 
ponents that cancel each other are avoided 
(1 1). Second, such orthogonal projection is 
equivalent to a linear autoassociative map- 
ping, which has been discussed extensively 
by Kohonen (12). In other words, the phys- 
ical structure of the actuator system seems to 
allow the set of optimal motor commands to 
be stored in a neuromechanical autoassocia- 
tor, which automatically suppresses all com- 
ponents of the signal that are not optimal, 
associates a motor command pattern opti- 
m d y  suited to generating the desired orien- 
tation change, and makes the signal available 
to the nervous system through the length 
receptors. 

On the other hand, combining Eqs. 1, 2, 
6,  and 7 yields 

Here the term between the two diagonal 
matrices (13) X and Z is an orthogonal 
projection operator onto the subspace or- 
thogonal to the space of optimal motor 
commands. This projection is equivalent to 
a linear novelty filter (12) with respect to the 
same "stored" vectors as those of the autoas- 
sociator. Hence the same neuromechanical 
system is capable of suppressing all compo- 
nents of the signal that are optimal, isolating 
the "novel" components that deviate from 
the optimal ones, and making these novel 
components available to the nervous system 
through the tension receptors. 

The matrices describing autoassociation 
and novelty detection in the neuromechani- 
cal system depend only on the number and 
the spatial arrangement of the muscles. Con- 
sequently, on the average, the matrices can 
be considered as constants for a given spe- 
cies. As in example, measurements (14) of 
the spatial arrangement of the six external 
human eye muscles have been evaluated. 
The characteristic matrices (15) for length 
receptors and tension receptors are given in 
Fig. 1. 

The operations performed by the neuro- 
mechanical system solve a nontrivial task: 
for any number of muscles and for an arbi- 
trarily oblique arrangement in the 3-D 
space, the optimal motor commands and the 
deviations from these commands are contin- 
uously found in real time. Solving this task 
with a computer involves at least a lengthy 
procedure such as calculating the general- 
ized inverse of a matrix; in the nonlinear case 
the task can only be solved numerically by 
means of iterative algorithms. In a neurome- 
chanical system, this function is achieved by 
minimization of a potential energy change 
AE in the n-dimensional signal space; replac- 
ing the 3-D torque and orientation changes 
in Eq. 3 by the sum of the n individual 
components yields 

The shape of the potential function close to 
the minimum is mainly determined by the 
stiffness term quadratic in Sp, but the loca- 
tion of the minimum is shifted by the acti- 
vation term dependent on Sm. Thus the 
calculatory power of the system is due to a 
mechanism analogous to the autoassociation 
mechanisms found in other systems, which 
are also based on the minimization of either 
quadratic energy functions (for example, 
spin glasses) or error functions (for example, 
neural networks). However, the neurome- 
chanical system is unique in one aspect: 
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whereas in other systems meaningful pat- 
terns can only be stored when a procedure, 
or learning rule, exists to establish the cor- 
rect interactions, in the neuromechanical 
system the interactions are built into the 
mechanics and happen to store meaningful 
patterns. 

As an example of the relation between the 
signals, consider the oculomotor system. 
When the oculomotor system has just begun 
to acquire the capability to generate func- 
tionally correct movements, such as to com- 
pensate for head movements in 3-D space, it 
is very likely that the coordination of the six 
extraocular muscles is still far from optimal. 
The two classes of stretch receptors in the 
extraocular muscles provide two types of 
signals that may help to teach the control 
system how to generate the same (function- 
ally correct) eye movement with an optimal 
trajectory in the six-dimensional actuator 
space; the length receptors produce by au- 
toassociation a sign-inverted optimal teach 
trajectory, and the tension receptors pro- 
duce by novelty detection a vectorial correc- 
tive time function. These signals are avail- 
able in several adaptive structures of the 
brain, for example, in the ftocculus of the 
cerebellum (16). 

Because the error-correcting properties of 
the operations are evolutionary advanta- 
geous, it is possible that the computational 
power of neuromechanics is exploited for 
the development of biological control sys- 
tems. A feedback mechanism suitable for 
improving the motor commands by means 
of the novelty detector signals requires only 

sign inversion and linear summation on a 
fast time scale. Linear summation in the 
control center does not suffice for the exploi- 
tation of the autoassociation signals in a 
feedback loop because a feedback of positive 
sensor signals leads to instabilities, whereas a 
feedback of negative sensor signals simply 
counteracts all movements. However, a 
nonlinear mechanism that uses the optimal 
signals as teachers for adaptation on a slower 
time scale would allow a fast optimizing 
feedfonvard controller to develop. Such 
nonlinear mechanisms are known as learn- 
ing rules in the field of artificial neural 
networks, and these mechanisms have been 
shown to be effective (17). Thus neurome- 
chanics may play an important role in the 
organization of control of biological and 
unconventional artificial manipulators. 
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