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Requirement of Microfilaments in Sorting of 
Actin Messenger RNA 

Specific messenger RNAs (mRNAs) can be sequestered within distinct cellular 
locations, but little is known about how this is accomplished. The participation ofthe 
three major cellular filaments in the localization of actin mRNA was studied in chicken 
embryo fibroblasts. Movement of actin mRNA to the cell periphery and maintenance 
of that regionalization required intact microfilaments (composed of actin) but not 
microtubules or intermediate filaments. The results presented here suggest that 
actin-binding proteins may participate in mRNA sorting. 

A FUNDAMENTAL QUESTION I N  CELL 

biology concerns how molecules are 
targeted to their sites of function. A 

number of works have described the se- 
quence-specific sorting of mRNA to distinct 
cellular regions (1 ). Often these mRNAs are 
sequestered in cellular locations where their 
corresponding proteins function (2), imply- 
ing that localized synthesis may be a means 
to regionalize some proteins. Our studies 
address the mechanism of actin mRNA sort- 
ing to the actin-rich rufing edges of motile 
chicken embryo fibroblasts (CEFs). 

Information for the localization of p-actin 
mRNA is encoded in the nudeic acid se- 
quence of the mRNA and not the amino 

untranslated region of bicoid mRNA is neces- 
sary for its localization in the embryo (4). 
Therefore, a mechanism exists in cells to 
transduce nucleic acid information into spa- 
tial information. It is likely that this mecha- 
nism involves cellular filament systems. Cyto- 
plasmic motor proteins have been described 
that implicate both microtubules and actin 
filaments in intracellular transport (5). Fur- 
thermore, evidence exists that a direct cyto- 
skeletal interaction with mRNA (6) appears 
to be necessary for translation (7). In Dikfy- 
ostelium discoideum, the translation elongation 
factor EF-la was shown to be an actin- 
binding protein (8). 

We have focused on the functions of the 

allowed to spread, actin mRNA re1ucalk.s to 
the cell periphery in minutes (3). Mainte- 
nance of this localization was studied in cells 
that had completed spreading and had pe- 
ripherally localized their actin mRNA. 

In order to correlate the spatial relation 
between actin message and cellular fila- 
ments, we visualized both simultaneously. A 
method was developed for detection of 
mRNA and specific proteins that preserved 
the intracellular location of the mRNA as 
well as the antigenicity of the protein (9). 
The three major filament systems-microtu- 
bules (MTs), intermediate filaments (IFs), 

Fig. 1. Dismbuaon of actin mRNA in relation to 
each of the three major cellular filament systems in 
CEFs. The simultaneous visualition of mRNA 
and protein was achieved by in situ hybridization 
with a digoxigenin-labeled actin cDNA probe in 
conjunction with mouse antibodies to tubulin, 
vimentin, and actin; detection was achieved with 

acid sequence of the nascent actin polypep- three cellular filament systems in the move- a rhodan;ine-conlugated antibody to digoxigenin 

tide (3). In Drosophila, a sequence in the 3' ment of actin mRNA to the cell periphery of and fluomcein-conjugated secondary goat 
antibodies to mouse protein (green). (A) Actin 

CEFs, as well as the subsequent maintenance m m A ,  red; MTs, green; (B) a&n m m A ,  red; 
of that localization. Movement and mainte- IFs. ereen: and (C) actin mWA. red: MFs. , "  , . , , , 

Dep-ent of Biology, universi of hbssafhusem nance of l e t i o n  were distinguished ex- green. All images were single exposures photo- 
Medical School, Worcester, MA 016%. 

perimendy with the use of spreading cells. graphed with a =is ~ 6 3  infinity-corrected ob- 
jective with standard epifluorescence optics. A 

"Present address: Depamnent of Medicine, Division of In ceh in suspension, actin mRNA is uni- dual-wavelength filter set was used that Hematology-Oncology, Emory University School of 
Mediane. Atlanta. GA 30322. formly distributed; however, when these cells simultaneous visualmtion of rhodmine and flu- 
tTo who" correspondence should be addressed. 
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are transferred to tissue culture plates and orescein without optical shift. 
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and microfibmeno (MFs)-are composed 
largelyof tubulin, vimentin, and actin, respec- 
tively. Fluorescent detection of actin mRNA 
rev& a high concentration in the distal 
regions of cellular lamellae in the form of 
punctate fluorescence (Fig. 1). Actin mRNA 
did not coincide with any of the filament 
systems, including MFs (Fig. l) ,  but was 
closely juxtaposed to the ruflhg edges, re- 
gions devoid of ribosomes (10) that contain 
high concentratiofls of6lamentous actin (MFs) 
(Fig. 1C). Because actin, unlike tubulin and 
vimentin, is also present in the form of 6-nm 
6laments, which are not resolvable by light 
microscopy, it is possible that actin mRNA 
coincides with a subset of these actin fila- 
ments. F i  1 shows that the sites of syn- 
thesis of actin do not coincide with the entire 
steady-state actin filament network but are 
found dosely juxmpod to regions ofthe cell 
undergoing actin polymerhation. This a p  
proach revealed the gross distribution of actin 
mRNA and cellular filamentr but did not re- 
solve their fhctional relation in terms of 
mRNA localization. In order to pmbe this 
interaaion, we used tfie specific qtoskeld- 
disrupting drugs Cokanid and cymhahii D. 

When fully spread cells (plated for 2 days) 

were exposed to Colcemid for 60 min, MTs 
depolymerized (Fig. 2, A and B) and IFs 
collapsed around the nudei (Fig. 2, C and 
D). However, actin mRNA was still local- 
ized in the peripheral regions of cells. MFs 
were d e c t e d  by Colcernid, as judged by 
the presence of stress fibers and high con- 
centrations of filamentous actin in the ruf- 
fling edges. Some cells acquired a stellate 
morphology as a result of Colcemid treat- 
ment with actin mRNA concentrated to the 
periphery of cellular projections (Fig.'2H). 
The percentage of Colcemid-treated cells 
with peripherally localized actin mRNA was 
not significantly different than control cells 
(mean 2 SD = 54 2 12% for n = 900 cells 
treated with Colcemid for 60 min versus 51 
2 11% for n = 1800 control cells) (Figs. 2G 
and 3A) (1 1). Even after 3 hours in Coke- 
mid, a significant number of cells had actin 
mRNA peripherally localized (40%, Fig. 
3A). In contrast, cells treated with low doses 
of cytochalasin D for 10 min, which did not 
affect MTs or IFs, underwent a dose-depen- 
dent disruption of MFs with a correspond- 
ing loss of peripheral actin mRNA localiza- 
tion. The percent of cells with actin mRNA 
peripherally localized after treatment with 

Flg. 2. The &kt of disruption of cellular b e n t  systems by Colcemid (5 pglml) and q m h h i a s i n  D 
(0.1 pgl*) on the maintenance and establishment of actin mRNA localization in CEFs. The CEFs 
were obtauled from peaoral m d e s  of 12-day-old chicken embryos and cultured for 2 days unless 
otherwise noted. (A through F) Fluomcent micrographs obtained with standard epifluorescence optics 
and camera mounted on a Zeiss IM 35 microscope. (0) This fluorescent image was obtained with a 
liquid ni-led charged-couple device camera mounted on the same microscope. The image was 
corrected for camera dark current and background fluorexence. Actin appears as white punctates in this 
black and white micrograph. (H and I) M i q p h s  obtained with bright-field optics. (J through L) 
Micrographs obtained with phase-contrast optics. (A) Normal cells stained for the detection of MTs. 
(B) As in (A), but &r a 60-min exposure to Colcemid. (C) Normal cells stained for the detection of 
IFs. (D) As in (C), but afm a 60-min cxposurr to Colcemid. (E) Normal cells stained for the detection 
of MFs. (F) As in (E), but afm a 60-min crposurc to cytochalasin D. (G) Actin mRNA distribution 
in normal cells revealed by in situ hybridization coupled with immunofluorcscent detection. (H) Actin 
mRNA dismbution in CEFs treated with Colcemid for 90 min before fixation was revealed by in situ 
hybridization coupled with imrnunoenzymatic detection. (I) Actin mRNA dismbution in cells treated 
with cytolalasin D for 10 min before fixation. (J) Actin mRNA distribution in n o d  cells that spread 
for 3 hours, (K) in cells that spread for 90 min in the presence of Colcemid, and (L) in cells that spread 
for 3 hours in the presence of cytochalasin D. In (I) through (L) actin mRNA was detected by the same 
method as in (H). 

qochalasin D (0.25 pg/ml) decreased by 
half (Fig. 3B). Higher doses (10 pg/ml) 
resulted in more severe disruption, with the 
formation of short bundles of MFs (similar 
to those shown in Fig. 2F), rather than 
normal s w  fibers (Fig. 2E) and only 10 2 
6%, (n = 600) of the cells had actin mRNA 
peripherally localized. The remaining cells 
had a uniform distribution of actin mRNA 
(Fig. 21). These data demonstrate that actin 
mRNA can rapidly disperse throughout the 
cytoplasm afier disruption of MFs and that 
maintenance of peripheral actin mRNA local- 
ization does not require intact MTs or IFs. 

Movement of actin mRNA to the cell 
periphery was studied in spreading cells. Cells 
were able to spread when plated in media that 
contained Colcemid (5 kg/&) but were un- 
able to generate a characteristic polarized 
morphology. MTs were not seen in these cells 
and a diffuse disaibution of tubulin (similar 
to that shown in Fig. 2B), as well as IFs that 
were collapsed around the nudei, were ob- 
served (similar to those shown in Fig. 2D). 
The polymerhation of MFs was unattected. 
Despite the disruption of two of the three 
major filament systems, actin mRNA was still 
localized to the cell periphery (Fig. 2K) as in 
control cells (Fig. 2J) [48 2 19% (n = 600) 
cells plated in Colcemid for 180 min had actin 
mRNA peripherally 1- as compared to 
48 2 17% (n = 900) control cells] (Fig. 3C). 
Furthermom, the kinetics of actin mRNA 
relocalization was similar to that observed for 
untreated cells (Fig. 3C). 

In contrast, cells plated in the presence of 
low doses of cytochalasin D (0.5 pg/ml) 
spread abnormally; often these cells extended 
thin sheets of cytoplasm that resembled lamel- 
lae but lacked r d k g  edges. MFs appeared as 
smaU dusters throughout the cytoplasm of 
these cells (Fig. 2F), whereas MTs and IFs 
were unafFected. Significantly fewer spreading 
cells had actin mRNA Iodized to the periph- 
ery after 180 min in cydmh.4111 D compared 
to control or Colcemid-treated cells [7 2 3% 
(n = 900) cells compared to 48 2 17% (n = 
900) control cells] (Fig. 3C). The majority of 
the cells had actin mRNA concentrated in the 
perinuclear region with lamellae-like struc- 
tures completely devoid of actin mRNA (Fig. 
2L). These data indicate that, in addition to 
their function in the maintenance of actin 
mRNA localization, intact MFs are also re- 
quired for the movement of actin mRNA to 
the cell periphery. 

The simplest mechanism that explains our 
results is that transport and subsequent an- 
choring of actin mRNA in the cell periphery 
is MF-dependent. Free diffusion of message 
is improbable because we have found the 
same percentage of actin mRNA associated 
with the detergentamacted cytoskeleton at 
both early and late stages of spreadmg (12). 
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Fig. 3. Effect of Colcemid and cytochalasin D on 
actin mRNA localization in cells under steady- 
state conditions (fully spread) (A and 8) and in 
cells in the process of spreading (C). (A) The 
effect of time in Colcemid on the percent of cells 
that display peripheral actin mRNA localization. 
Cells were treated with Colcemid (5 ygjml) for 
various times, fixed, hybridized, and then detected 
with the alkaline phosphatase reaction. The per- 
cent of cells with localized actin mRNA was then 
determined. For 0 min, there were six experi- 
ments, 1800 total cells counted and an SD of 8%. 
For 30 min, there were three experiments, 900 
total cells counted and an SD of 12%. For 60 min, 
there were three experiments, 900 total cells 
counted and an SD of 18%. For 90 min, there 
were two experiments, 600 total cells and a range 
of 4%. For 180 min, one experiment was per- 
formed with 300 total cells. (B) The effect of a 
10-min exposure to various cytochalasin D doses 
on the percent of cells with peripherally localized 
actin mRNA. Cells were treated with varying 
doses of cytochalasin D for 10 min after which 
actin mRNA distribution was analyzed. Each 
point is the average of two experiments (600 cells 
counted); the range was less than 7% at all 
concentrations except for 0.1 pg/ml where the 
range was 19%. (C) The effect of Colcemid 
(triangles) or cytochalasin D (solid squares) on 
the relocalization of actin mRNA that occurs 
during spreading (control, open squares). Cells 
were plated in the presence of Colcemid (5 kgjml) 
or cytochalasin D (0.5 pg/ml) and allowed to 
spread for various periods of time. For the con- 
trol, each time point is the average of three experimc 
point is the average of two experiments 2 range (6C 
the average of three experiments & SD (900 cells). 

This finding indicates that actin mRNA is not 
fiee to d&e in the cytoplasm when most cells 
are in the process of relcdzing actin mRNA 
or when localization is completed. Further- 
more, the relocalization of actin mRNA is not 
passively associated with the redistribution of 
MFs because it lags behind the re-extension of 
cellular lamellae (3) .  The association of actin 
mRNA with MFs is not unique to this message 
because vimentin and tubulin mRNAs are also 
associated with MFs (13) and the majority of 
polyadenylated mRNA is associated with MFs 
as well, (14). Furthermore, because actin 
mRNA continues to be sorted after inhibition 
of protein synthesis, this association with MFs 
is not related to an affinity of nascent actin 
polypeptides for MFs as a result of cotransla- 
tional assembly (3, 15). 

However, it remains to be seen whether 
other messages may use different filament 
systems for transport. InXenopus oocytes, the 
transport of Vgl mRNA to the vegetal pole 
has been shown to be MT-dependent because 
it is inhibited by Colcemid (16). It is possible 
that the failure of Vgl mRNA to transport to 
the vegetal pole in that study resulted from 
prolonged exposure to the drug (5 days) 
rather than a direct effect on MTs. The rapid- 
ity of actin mRNA localization in our studies 
allows for short drug exposures. Hence, the 
sensitivity of actin mRNA localization to 
cytochalasin D and its resistance to Colcernid 

- 
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:nts 2 SD (900 cells counted). For Colcemid, each 
I0 cells counted). For cytochalasin D, each point is 

occur within physiologically relevant time 
periods. There is substantial evidence that 
MFs may h a i o n  in transport of vesicles and 
organelles. Our studies suggest that they may 
participate in message transport as well. The 
finding that transport and anchoring of actin 
mRNA both occur on MFs suggests that 
different actin-binding proteins may partici- 
pate in these two components of actin 
mRNA localization. 
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