
The Combination of Symbolic and 
Numerical Computation for Three-Dimensional 

Modeling of RNA 

Three-dimensional (3-D) structural models of RNA are 
essential for understanding of the cellular roles played by 
RNA. Such models have been obtained by a technique 
based on a constraint satisfaction algorithm that allows 
for the facile incorporation of secondary and other struc- 
tural information. The program generates 3-D structures 
of RNA with atomic-level resolution that can be refined 
by numerical techniques such as energy minimization. 
The precision of this technique was evaluated by compar- 
ing predicted transfer RNA loop and RNA pseudoknot 
structures with known or consensus structures. The root- 
mean-square deviation (2.0 to 3.0 angstroms before min- 
imization) between predicted and control structures re- 
veal this system to be an effective method in modeling 
RNA. 

T HE REALIZATION, MANY YEARS AGO, THAT POLYPEPTIDES 

may encode sufficient structural information in their amino 
acid sequences to self-assemble into functional conforma- 

tions is largely responsible for the fascination surrounding attempts 
to predict 3-D structures from protein sequences (1). In addition, 
detailed knowledge of protein conformation is considered a crucial 
prerequisite to the comprehension and eventual manipulation of 
protein function (2). However, even though very powerful methods 
have been used, protein structure prediction has proved elusive (3). 

By comparison, the prediction of single-stranded nucleic acid 
conformations, in particular those of RNA, might be considered 
even more challenging, since with the exception of short oligomers 
only one type of RNA (tRNA) has ever been crystallized and 
subjected to x-ray analysis (4, 5 ) .  However, predictions of the 
secondary structure of RNA, that is, its base-pairing pattern, 
whether based on free energy calculations or inferred from compen- 
satory mutations, are more reliable than those predicted for proteins 
from amino acid sequence (6) .  Furthermore, these patterns make it 
possible to juxtapose nucleotides that are distant in the primary 
structure. This advantage, coupled with the richness of RNA cellular 
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functions, makes RNA structure prediction and modeling particu- 
larly attractive. 

In the search for an acceptable modeling procedure, many 
schemes have been considered and their weaknesses have been 
analyzed. Those based on energy minimization or distance geometry 
(7-9) are limited because solutions are likely to represent local 
minima, depending on the input structure, rather than the global 
minimum. Nevertheless, these methods could be helpful to refine 
low-resolution models (10). Other methods developed for proteins 
sample the conformational space and then screen potential solutions 
on the basis of energy or hydrophobicity criteria (11, 12). Algo- 
rithms of this type require computer time proportional to nm, where 
n is the number of variables and rn the number of permitted values. 
Therefore, even though satisfactory solutions are found, modeling 
of only relatively small molecules at atomic resolution can be 
realistically attempted (1 1, 13). 

The limitations of the above methods and the desire to make use 
of accumulated structural data led us to consider RNA modeling as 
a constraint satisfaction problem (CSP), that is, all potential solu- 
tions must be consistent with a given ensemble of structural 
information. The facility of data incorporation and the ability to 
implement CSP algorithms suggested the use of symbolic program- 
ming, where symbols or simplified models rather than mathematical 
formulas are used to represent complex phenomena (14). Solutions 
from these algorithms are less precise but could serve as good 
starting structures for refinement by computational methods such as 
energy minimization (15). We therefore have implemented the 
following scheme for RNA structure modeling and prediction and 
include: (i) the definition of double-helical and single-stranded 
regions of the RNA by existing secondary structure algorithms; (ii) 
the use of secondary and other structural information in order to 
define a CSP; (iii) the generation of structures that are consistent 
with these constraints with the use of the symbolic program; and 
(iv) the refinement of solutions produced by the program with an 
energy minimization routine. Here we show that this combination 
of symbolic and numerical techniques can be successfully applied to 
a variety of RNA structural problems. 

The CSP algorithm. A CSP algorithm appropriate for macro- 
molecular modeling is defined by the variables X = {x,, x2 . . . x,), 
the values of which are taken from the domains of permitted values 
D = {dl, d2 . . . d,), and a set of constraints, C = {c ,,, , , , [p E (1 . . . 
n), q E (1 . . . p - 1)). Although in this case the constraints are 
defined as binary, that is, between any two structural features, the 
case of constraints applied to more than two features has been 
implemented. Solving the CSP means finding the value or values of 
X (from its domain of values D )  that satisfy all constraints in C. This 
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algorithm generates a search tree where each node corresponds to 
the assignment of a value to a variable. At each assignment, the 
consistency of that value with the constraints is evaluated. If 
consistent, the next variable is assigned and the process is continued. 
If inconsistent, this node and attached branches are pruned from the 
search tree and the algorithm "backtracks" to the previous node 
(Fig. 1A) (16). The backtracking feature can increase efficiency of 
the algorithm by reducing the number of assignments even though 
the complexity of the problem remains the same. 

For the purposes of RNA modeling, the variable (X) is the set of 
nucleotides corresponding to an RNA sequence; the domain of 
values attributed to the nucleotides (D) is the set of cartesian 
products of various permitted nucleotide conformations and 3-D 
transformational matrices. An RNA molecule is specified by its 
nucleotide sequence, in which each nucleotide is annotated by a 
conformational indicator, and by any other known constraints. The 
conformational indicator describes the spatial relation of this nucle- 
otide to others and provides the means to introduce problem- 
specific information into the algorithm. Each indicator uses a value 
domain that is generated by a specific computational "help" func- 
tion. These functions reduce the number of variable assignments 
(see below) and the execution time of the algorithm (15). 

The program called MC-SYM (Macromolecular Conformation by 
SYMbolic generation) has been written in Miranda, a " M y  lazy" 
functional programming language (1 7, 18). Since a Miranda pro- 
gram is both easy to write and modify, it constitutes an ideal 
prototyping environment. Programs are 10 to 20 times shorter than 
those written in C or Pascal, although execution times are greater. 
The informational flow chart for this system and its relation to the 
numerical units are shown in Fig. 1B. 

Representation of nucleotides. Since the conformational flexi- 
bility of a single nucleotide is great, its domain of permitted values 
would be virtually infinite, if some simplifications were not made. 
Therefore, an RNA structural database was assembled that included 
all internucleotide and internal nucleotide torsion angles found in 
the crystal structures of tRNA (4, 5, 19). From this base, a set of ten 
typical conformations was constructed by taking representative 
samplings of each internal torsion angle: a, P, 6, and x (Fig. 2 and 
Table 1). The set includes C2'-endo, C3'-endo sugar puckers, nitro- 
gen base anti and high anti conformations (20). In addition to these 
conformations, the value domains contain transformational matri- 
ces, which in biochemical terms represent the different ways in 
which two nucleotides can be joined. 

Examination of the database revealed that most internucleotide 
bonds, 5, are encompassed in one of three P-05' torsions (-90°, 
+90°, and 180"). The multiplication of one of the ten nucleotide 
conformations by one of the three transformational matrices yields 

Î I CSP solver I 1 NucWide ;truct~l Help I 
conformations constraints functions 

Backtrack a 
Fig. 1. (A) Search tree and backtracking. The values {v,, v , ,  . . . v,,J for 
variable xo are taken from the value domain do. The algorithm backtracks 
when an assignment is not consistent with a constraint. (B) Informational 
flow chart for the modeling system. 

Fig. 2. Definition of nucleotide tor- I 
sion angles. 0 

l a  B 

the atomic coordinates of the nucleotide and is the assignment of the 
variable x. The use of ten torsion angle sets reduces somewhat the 
conformational freedom of the modeling procedure and conse- 
quently the execution time of the algorithm. However, this limita- 
tion does not hinder the use of any atom of the nucleotide in 
constraints evaluated during CSP solving, since the exact location of 
every atom is known, nor does it interfere with the generation of 
structures consistent with constraints, since variability in intranucle- 
otide torsion angles can be simulated by declaring more approximate 
constraints. The problem of further refining intranucleotide torsion 
angles is relegated to energy minimization in the last step of our 
scheme. 

Constructing polynucleotides. The generation of the polynucle- 
otide chain is accomplished stepwise in accordance with available 
structural information. Consider the case of the dinucleotide pApG 
where no structural information is available. First the procedure 
assigns one by one the ten different conformations described above 
for PA. In the next step pG is added and the three transformational 
matrices in its domain of values are used to calculate the position of 
pG. The ten possible conformations of pG raise the total number of 
potential solutions (the conformational search tree) to 10 x 3 x 10 
= 300. 

Now consider the above example if pApG were in an A-helical 
region of an RNA molecule. This information, which would reduce 
dramatically the number of solutions, is incorporated into the 
program by the conformational indicator of the two nucleotides. 
Here, the indicator would be Helix5' (generates helices in the 5' to 
3' direction). The help function of the same name would generate 
the domain of values permitted for each nucleotide. Since only one 
conformation and one transformational matrix for each of the two 
nucleotides is generated by this help function, only one 3-D 
structure exists for the dinucleotide. Other help functions that have 
been implemented are given in Table 2. 

Finally, other structural information is incorporated by a con- 
straint. This information can be expressed as distance equalities or 
inequalities between specific atoms of any nucleotide or by other 
more complex formulations. The generation of an RNA loop 
provides an example of the use of constraints. In order to generate 
a three-nucleotide loop at the end of a double-helical stem region, 
the problem can be stated as follows: A Wc indicator relates the two 
stem nucleotides at the base of the loop and the Connect indicator 
relates the three nucleotides in the loop. The program would 
normally produce 303 structures (from 30 structures of each of the 
three nucleotides of the loop). However, not all of these possibilities 
could be a solution, since the loop must be closed. In order to ensure 
closure, a distance constraint is imposed between the last nucleotide 
of the loop and the first nucleotide of the stem region; the constraint 
is that the two nucleotides must be close enough so that a 
phosphodiester bond can link them. 

Although one might think intuitively that constraints of high 
precision would lead to better solutions, this modeling system, 
making use of a limited sampling of intra- and internucleotide 
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Table 1. Intranucleotide angles. The ten sets of angles derived from those 
most frequently observed in tIWAPhe. For the pseudorotation angle, P,  
C3' corresponds to C3'-endo and C2' corresponds to C2'-endo. For the x 
angle, -160" corresponds to an anti orientation and -90 to a high-anti 
orientation. 

Angle 1 2 3 4 5 6 7 8 9 10 

torsion angles, requires that the precision of constraints be relaxed 
somewhat so that good solutions are not eliminated. An ideal data 
set contains a large number of constraints, even if they are approx- 
imate, since each would help to prune the search tree. 

Energy minimization. The role of minimization in our scheme is 
threefold. First, even though atomic collisions are minimized by the 
judicious use of torsion angles for the intra- and internucleotide 
bonds, the structure-generation feature in MC-SYM does not 
interdict spatial overlapping of atoms unless appropriate constraints 
are specified. Consequently, energy minimization provides a way of 
removing possible atomic collisions. However, this procedure can- 
not correct or refine structures resulting from intertwining of helical 
regions. Such problems must be treated with constraints in the 
polynucleotide generation step. 

Second, the rigid nucleotides in the modeling procedure require 
that constraints be approximated. In a subsequent example, a 3 A 
constraint is used for a P-05' bond that is normally 1.5 A. Other 
torsion angles in the molecule can be adjusted so that the energy 
minimization procedure can rapidly rectify the P-0 bond length. 
Our experience with MC-SYM indicates that about ten cycles of 
minimization are sufficient. Also, energy minimization has the effect 
of increasing flexibility in the model, since previously fixed torsion 
angles can be modified during minimization. We do not expect 
major changes in torsion angles, however, unless thousands of cycles 
are executed, which, based on the approximate nature of simple 
potential energy functions for nucleic acids, would likely introduce 
other problems. 

Finally, because the interplay between MC-SYM and energy 
minimization is mutually beneficial, MC-SYM can play an important 
role in providing good starting structures for extensive energy 
minimization or molecular dynamics, since a major problem of these 
computational techniques is the starting structure dependence of 
solutions. The multiple solutions of MC-SYM help to legitimize the 
minimization techniques because computations are performed on a 
more complete sampling of possible conformations. In order to 
assist in communication between these modules, MC-SYM gener- 
ates conventional coordinate files. 

RNA loops. Energy minimization, structure homology, and 
interactive computer graphics have been used to resolve the com- 
plexities inherent to the 3-D modeling of looped regions in macro- 
molecules (21-23). Because of the importance of loops in RNA 
structure, we have generalized the above example of loop genera- 
tion. The search for nucleotide values that satisfy a bond-distance 
constraint between two selected nucleotides of a loop has been 
applied to predict the conformation of the anticodon and T-loops 
found in tRNA. 

In the definition of the anticodon loop, the five nucleotides 34 to 
38 are assumed to be stacked (Fig. 3A). This structural information 
had been predicted for the anticodon loop of tRNA before the 
crystal structure was available (24), but would not necessarily be 
available for an unknown loop. In this example, we have allowed a 

bond distance of 3.0 A for the single-loopclosure constraint 
between the 0 3 '  of U33 and the P of G34. 

The generation of the stem region with the Wc and Helix5' 
indicators takes only 0.05 s (25). The stacked region of the loop was 
generated by Stacked3' and gave 2' = 32 possible solutions in 0.43 
s. The least-restrained area of the loop consists of the two nucleo- 
tides, C32 and U33, for which no conformational information is 
available other than the nucleotides must be positioned so that the 
loop can be closed. The Connect5' indicator here generated 27 
different values for each nucleotide such that the search tree for the 
entire stem loop was 27 x 27 x 2' = 23,328, and of these, 171 
structures satisfied the closure constraint (0.73 percent of the 
conformational space). The simplicity of the coded data for this loop 
is illustrated in Fig. 3B. 

In order to evaluate the precision of the system, we compared the 
171 solutions with the known crystal str&ture of the &ticodon 
loop, and the congruence was expressed as the root-mean-square 
(rms) deviation in angstroms. The energy level of each solution was 
determined after 1000 cycles of energy minimization by the adapted 
Newton-Raphson method available in CHARMm (26). The solu- 
tion with the lowest energy level also had the lowest rms value. The 
correlation between the energy level and the rms deviation was 
determined by plotting the values for each solution; the correlation 
coefficient p was 0.385 (27). The superposition of the crystal 
structure and the predicted structure with the lowest deviation (2.00 
A for 730 atoms) is shown in Fig. 3C. Further analysis revealed that 
this value is surprisingly low, since the rms deviation for the 426 
atoms in the base-paired region alone is 0.92 A. Therefore 26 
percent of the rms deviation of the total structure derives from the 
region that we assumed was known with precision. Obviously, full 
congruency was not expected because the duplex was built with 
idealized torsion angles that do not take into account sequence or 
other local effects. Prediction of the phosphate position for every 
nucleotide in the structure is better (1.5 A) than that for the entire 
ribophosphate backbone (1.65 A). Therefore, the imprecision in 
placing the nitrogen base may represent a significant contribution to 
the rms deviation. 

In a similar manner, we modeled the T-loop and stem of 
tRNAPhe. The structural information used for the model consisted 
of the reverse Hoogsteen pairing between T54 and A58 and the 
stacking of bases G53, T54, and $55, all of which were proposed 
prior to the crystal structure (28). The bridging of the loop resulting 
from the T54-A58 pair divides the problem into two smaller loops, 
each with a ring-closing distance constraint of 3.5 A. The search Gee 
size for this problem is 26,244,000; MC-SYM found 168 structures 
(less than 0.001 percent) that satisfied both closure constraints in 
9.1 hours of CPU time. The T-loop and stem solutions were 
compared with the crystal structure, and the solution with the 

Table 2. Help functions called by conformational indicators. The normal 
number of conformations used are indicated; however, these can be 
modified according to the particular case. The total number of values for a 
given nucleotide is the number of matrices multiplied by the number of 
conformations. 

Indicator Matrices Conforma- 
(no.) tions (no.) 

Description 

1 1 Watson-Crick base pair in an A helix 
1 1 Reverse Hoogsteen base pair 
1 1 A-helix form appended to 3' end 
1 1 A-helix form appended to 5' end 
3 10 Free connection to 3' end 
3 9 Free connection to 5' end 
2 2 Stacked connection to 3' end 
2 2 Stacked connection to 5' end 
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lowest rms deviation and incidently the lowest energy value after 
1000 cycles of minimization was selected for further study. The rms 
deviation was 1.76 A for the phosphates, 2.04 A for the backbone, 
and 2.35 A for all atoms (with the exception of the nonpolar 
hydrogens). 

In comparison with the results of the anticodon loop, the 
predicted helical region and the stacked nucleotides of the T-loop 
are much doser to the observed structure. However, the predicted 
conformation of the nucleotides where no structural information 
was available is slightly worse. Overall the juxtaposition of the 
backbone of the calculated and crystal structure (Fig. 3D) is quite 
good, particularly because the several known tertiary interactions of 
this loop were not used in the prediction. 

Prediction of a pseudoknot. A pseudoknot is characterized by 
base pairings between a loop and another region of RNA (Fig. 4A). 
This structure, first proposed in the tRNA-like 3'-terminus of turnip 
yellow mosaic virus RNA, has since been suggested in many RNA's 
including 16s RNA and autocatalytic group I inmns (29). Dumas 
et al. produced a theoretical model for the pseudoknot structure by 
computer graphics (30). A model derived from nuclear magnetic 
resonance (NMR) studies was proposed and essentially confirmed 
the earlier theoretical model (31). The information used in the 
theoretical model was introduced into MC-SYM to reconstruct the 
model automatically. Reconstruction was performed with three 

types of conformational indicators, (i) Wc and (ii) Helix3' for the 
base-pairing pattern in Fig. 4A and (iii) Stacked5' for the stacking 
of bases 4,5, and 6. The Connecd' was used for the conformation- 
ally unknown nucleotides in loops L l  and L2. As an additional 
constraint, the two helices were made coaxial. 

The modeling of the helical regions took 0.13 s. Modeling of loop 
L1 implies a search tree length of 108 (2 x 2 x 27), which in 34 s 
generated only one solution that satisfied a loop-closure constraint 
of 4.0 A between the 0 3 '  of C6 and the P of U7. The L2 loop 
generated a search tree of size 19,683 and required 37 min to 
produce 62 solutions that satisfied a loop-closure constraint of 4.0 A 
between the 0 3 '  of A18 and the P of U19. Therefore, the entire 
problem implies a search tree size of 2,125,764 (108 x 19,683) and 
required -1 hour to be explored by the system. The 62 solutions, 
representing only 0.003 percent of the conformational space, were 
evaluated as to their congruence with the theoretical model (30). 
The solution with the lowest energy level also had the smallest rms 
deviation from the consensus model. This model predicts an L1 
region in which the phosphates are more toward the inside of the 
molecule than in the theoretical model (Fig. 4B). The overall rms 
deviation is 2.80 A. 

A recent study of the constraints on dosing loops L l  and L2 of 
the pseudoknot by NMR offered an oppomnity to test the reliabil- 
ity of MC-SYM (31). We used the same constraints as above to 

Fig. 3. (A) Secondary structure of the anticodon loop used by MC-SYM. 
(B) The Miranda script of the structural information used to model the 
anticodon loop of tRNA. The function "sequence" describes the confor- 
mational information for each nucleotide of the molecule and the function 
"constraints," the constraints on the 3-D structure. Each data line in the 
sequence list contains the name of the molecule, the position number, the 
nucleotide at that position, the name of the help function which applies to 
the nucleotide, and finally the nucleotide to which the help function is 
referred; rA, rC, rG, and rU are the four ribonucleotides; the "s" following 
the name of the nucleotide indicates the use of ten different intranucleotide 

conformations. "Reference" is used to denote the starting nucleotide in the 
procedure. The constraint is read as follows: the constraint on the partial 
solution up to the present nucleotide, k. When k = 33, the constraint is 
satisfied, if the distance between the 03'  of nucleotide 33 and the 
phosphorus of nucleotide 34 is less than or equal to 3 A. There is no 
verification in any other case, that is when k is greater or less than 33. (C) 
The superposition of the predicted (white) and crystal (violet) structures 
of the anticodon stem loop. (D) The superposition of the backbone atoms 
of the predicted (white) and the crystal (violet) structures of the T stem 
loop. 
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Fig. 4. (A) Secondary structure of the RNA pseudohot. 
(B) All-atom stereo representation of the predicted 
pseudohot structure. 

determine the number of consistent solutions when the length of the 
stems and the loops were varied. The minimum number of nucleo- 
tides in the loop L1 necessary to bridge the S2 region is three for 
zero to three base pairs and two for four to eight base pairs. For 
region S1, three nucleotides are necessary in loop L2 when there are 
zero to two base pairs and four are necessary when there are three 
base pairs. In cases where NMR indicates that the pseudoknot 
structure is unlikely, such as for S2 = 5 and L1 = 1 or S1 = 3 and 
L2 = 2, MC-SYM found no solution. In addition, other restrictions 
on the structure are apparent; there is a complex relation between 
the length of L1 and the stem S2 that it spans. In most cases at least 
two loop nucleotides are needed; however, helix lengths of three 
nucleotide pairs or less require three loop nucleotides. Loop L2 
must contain three or four nucleotides for helices up to three base 
pairs. Judging from this data, we estimate that at least four 
nucleotides are needed to span helices of four or more nucleotide 
pairs. The high concordance between the NMR and modeled 
structures gives some confidence that MC-SYM could be used to 
formulate structural criteria for pseudoknots. 

Precision and perspective. We have implemented a CSP-based 
computational system that can serve as an "intelligent" tool for 
generating RNA tertiary structures when topological constraints are 
available. Results show that all-atom representations of macromol- 
ecules are generated relatively easily when conformational space is 
restricted. Moreover, the system is flexible enough to evaluate 
hypotheses concerning RNA structure (pseudoknots) and to use a 
wide variety of RNA structural knowledge. We have presented a set 
of conformations and help functions that have been extensively 
tested in RNA modeling and prediction. These parameters can easily 
be changed and adapted as new information on RNA structure 
becomes available. 

Table 3. Comparison of the three models. 

The question as to the precision of the models is of primary 
importance. For this reason solutions generated by MC-SYM 
summarized in Table 3 were compared to the known crystal or 
theoretical structure. Although it is very difficult to compare the 
precision of our models with crystal structures, the rms deviation 
between the predicted and the control structures suggests that the 
resolution of the modeling system is somewhat less than that of'a 
good x-ray model. On the other hand, both x-ray and MC-SYM 
structures represent a conformational space, and the question is to 
what extent the two spaces overlap (32). 

Particularly remarkable is the observation that as the number of 
constraints and the size of the potential search tree increases, the 
solution ratio decreases dramatically. Also, the CPU time is not 
related to the search tree space, which is to be expected if the 
constraints play a major role in pruning the tree. This result is very 
encouraging because it raises hopes that much larger molecules can 
be treated by MC-SYM provided that sufficient constraints are 
known. The apparent correlation between the structures with the 
smallest rms deviation and their energy level suggests that the 
selection among solutions of unknown structures could be done by 
choosing the solutions with the lowest energies. 

The combination of symbolic and numerical techniques such as 
CSP solving and energy minimization constitutes a novel computa- 
tional tool (14). These two methods are mutually beneficial: the 
precision lost due to simplification of the model in the symbolic 
programming environment is recovered by the numerical module at 
a later step in the process, and the numerical module is used only for 
the minimization of reasonable structures provided by the CSP 
module. In the same way, MC-SYM structures could be very useful 
for molecular dynamic calculations. NMR studies are likely to be the 
base of many RNA structure determinations, and although this kind 

Search Solutions Solution CPU time* Energyt P-P* BkS Structure tree size (no.) ratio (s) (kcal/mol) (A) (A) 

Anticodon 2 x lo4 171 7 x 2,679 -460.7 1.50 1.65 2.00 
T-loop 2 X lo6 168 1 x 33,100 -423.6 2.04 1.76 2.35 
Pseudohot 2 x lo6 62 3 x 3,617 -618.1 3.29 2.95 2.80 

*On a Sun SPARCstation 1 + with the use of a Miranda interpreter, version 2.014. tDetermined by CHARMm (26). $P-P refers to the rms deviation of phosphorus atoms 
only. OBk to the atoms of the backbone (P, 0 5 ' ,  C5', C4', C3', and 0 3 ' ) .  IIH includes all atoms except nonpolar hydrogens (polar hydrogens are those involved in base 
pairing and the 2'-OH). 
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of information can be treated by minimization routines (23, 31, 33, 
34), these data could be used more elegantly in the system we 
describe in this article. 
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"But we spend all our money creating toxic waste. We were hoping someone else 
would figure our how to detoxify it." 
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