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Computer Vision 

The field of computer vision is devoted to discovering algo- 
rithms, data representations, and computer architectures that 
embody sthe principles underlying visual capabilities. This 
article describes how the field of computer (and robot) vision 
has evolved, particularly over the past 20 years, and introduc- 
es its central methodological paradigms. 

v ISION IS THE MOST POWERFUL SENSE FOR MANY LIVING 

organisms, including humans. We take it so much for granted, 
because it is ordinarily so effortless, that we often fail to seriously 

consider how it works. Students of visual perception work in diverse 
fields, including neuroanatomy and physiology, psychology, computa- 
tional and robot vision, and engineering. But researchers in Merent 
fields ask Merent questions about vision. Some ask empirical questions: 
How are existing biological visual systems actually designed? On the 
other hand, scientists and engineers try to answer theoretical and 
normative questions. The theoretical question in vision is, What is the 

The authors are at the Center for Automation Research, University of Maryland, 
College Park, MD 20742-3411. 

range of possible mechanisms underlying perceptual capabihties in vision 
systems? The normative question is, How should a pamcular class of 
vision systems (or robots) be designed so that it can efficiently perform 
a set of specific visual tasks? The three types of basic questions do not in 
general have the same answers. 

A very large part of the human brain is devoted to visual 
perception (1) (Fig. 1). Computational algorithms are implemented 
in this massive network of neurons; they obtain their inputs from 
the retina, and produce as output an "understanding" of the scene in 
view. But what does it mean to "understand" the scene? What 
algorithms and data representations are used by the brain? Analo- 
gously, given a set of images acquired by a TV camera, what 
computer architectures, data structures and algorithms should we 
use to create a machine that can "see" as we do? ( 2 4 )  (Fig. 2). 

Many organisms possess visual capabilities, and their visual sys- 
tems are not structured in the same way; moreover, they live in 
different environments and use vision for different purposes. But 
although a given visual capability, say for obstacle avoidance, is not 
necessarily implemented in the same way in the fly, the rat, and the 
human, the principles underlying this ability may be the same. It is 
these principles that are the subject of research in computer vision. 
As our understanding of visual principles advances, we can build 
robots that perform various tasks through the use of vision. 
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Fig. 1. Visual areas in Posterior 
the brain. The eye forms 
an optical image of the 
scene on the retina, an Striate 
array of photoreceptors cortex 
which dscretely sample 
the image. Other layers 
of cells associated with 
the retina perform vari- 
ous types of local com- 
putations on the sarn- 
pled image. The pro- 
cessed image is transmit- geniculate cortex 
ted in parallel along the M Y  
optic nerve, through the lateral geniculate body, to the striate visual cortex, 
where additional types of local operations are performed; these operations 
are sensitive to the presence of local features such as spots, bars, and edges in 
the image. The outputs of these operations are transmitted to other areas of 
the cortex, particularly to the posterior parietal cortex and the inferior 
temporal cortex, where global properties of the image appear to be analyzed. 

The Goal of Image Understanding 
What is vision for? Why do organisms have vision and why do we 

want to equip robots with it? We use vision (and other senses) to 
interact with our environments and survive-to navigate and avoid 
obstacles, to recognize and pick up objects, to identify food and 
danger, friends and enemies. In other words, we use vision to 
perform visual tasks; we engage in many kinds of behaviors that are 
guided by visual inputs. 

How can we study the principles of visual perception? Should we 
smdy individual tasks? Because the nature of a task depends on the 
agent and the environment, what kind of agent should we assume in 
this study-an insect, a human, a robot? Such questions demon- 
strate that one of the hardest problems we encounter in the study of 
visual perception is what questions to ask. 

A set of specific questions was formulated in the work of the late 
David Marr (5), who suggested that we can study the principles of 
visual perception by considering the purpose of vision as describing 
scenes. In other words, we should regard the task of vision as being 
the construction of a detailed representation of the physical world, 
independent of the tasks under consideration. This viewpoint is 
prevalent; for example, we read in a recent survey article (6,  p. 389) 
that "The goal of an image-understanding system is to transform 
two-dimensional data into a description of the three-dimensional 
spatiotemporal world . . . [Such a system] must infer 3D surfaces, 
volumes, boundaries, shadows, occlusion, depth, color, motion, 

>> . . . . 
Regarding the central goal of vision as scene recovery makes 

sense. If we are able to create, using vision, an accurate representa- 
tion of the three-dimensional (3D) world and its properties, then 
using this information we can perform any visual task. Because we 
will know where obstacles are, we can avoid them; because we will 
have an accurate representation of an object's properties, we will be 
able to match it against models in a database of possible objects and 
recognize it. The recovery methodology also allows us to study 
vision in isolation-something which is very desirable in the early 
stages of development of any new field. 

The next section describes research on the problem of recovery, 
which has given rise to some interesting mathematical problems. It 
should be noted that treating recovery as a central vision problem 
raises a theoretical question: What properties of a scene can be 
recovered by means of vision? The study of the recovery problem 
tells us about the mathematical relationships between properties of 
the image and properties of the physical world. It does not 
necessarily tell us how to build a vision system for a specific purpose, 
because in order to perform a given visual task we may not need to 

fully recover the scene; but it does shed some light on the problems 
of designing visual systems. 

Scene Recovery: 
A Theory of Computer Vision 

If we need to treat vision as a recovery problem, it is necessary to 
make the image formation process explicit. Consider the abstract 
model of an observer in Fig. 3. The light going through a pinhole 
camera creates an image, that is, an array of light intensities (in 
digital form the intensities are represented by numbers) (Fig. 4). 
The problem of recovery is the "inverse optics" problem; optics 
maps the world onto the image, vision attempts to invert the 
process. It is important to note that recovery tasks and their 
applications (navigation, recognition, and so on) become easier if 
one has a specific model for the class of scenes in question. In this 
article, however, we will focus on techniques based on general scene 
models and on general-purpose tasks that visual systems might need 
to perform. 

The early years (1955-1970). The earliest work in the field dealt 
with the analysis of single images of static scenes. A great deal of 
effort was expended on images of "scenes" that are (approximately) 
two-dimensional (2D): documents, micrographs (where, because of 
the shallow depth of field, the image is an "optical section" of the 
specimen), and images of the earth's surface taken from high 
altitudes (in which terrain relief is negligible); the interpretation of 
such images is usually called "pattern recognition," not computer 
vision. 

When work on robot vision began in the 1960s, it initially 
concentrated on the so-called "blocks world," that is, the scene was 
assumed to consist of a set of polyhedra. Because the image is a 
perspective projection of the scene, geometric analysis yields useful 
relationships between parameters of the block edges in the image 
and the 3D structure of the blocks. Such relationships can be used to 
recover geometric properties, such as the concavity or convexity of 
an edge [see (7) for a review]. 

At the same time a lot of work was done on what was called 
"low-level" processing, much of it devoted to the extraction of 
"important" intensity changes (edges) in an image. In a blocks- 
world image these should correspond to depth and slope discon- 
tinuities or to shadow boundaries. Edge detection was usually 
achieved by convolving images with local operators and thresh- 
olding the results. Finding homogeneous or smooth regions, 
which is essentially complementary to edge finding, was thought 
to have the potential of isolating image regions that were the 

Fig. 2. Hardware for robot vision. The T V  camera forms an optical image of 
the scene on an array of photoreceptors. The sampled image is sequentially 
scanned and stored in a frame buffer, from which it is read into the computer 
memory. The processing unit of the computer can randomly access the 
memory and perform arbitrary computations on the image data. The results 
of these computations can be used to control the manipulator. 
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Fig. 3. Geomeny of vision. The optical image is formed by perspective 
projection through a point (a pinhole, or the nodal point of a lens). 

images of surface patches with some physical significance. It was 
soon realized, however, that physically significant parts of a scene 
cannot be identified solely by analyzing the gray level intensities in 
the image. By the early 1970s it had become clear that low-level 
vision could not generally derive useful scene descriptions from a 
single image, because even seemingly simple problems such as 
edge detection are in fact very complex. 

At that time, which was a period of rapid progress in the 
development of artificial intelligence, it was suggested that "high- 
level" knowledge about the scene could be used in conjunction with 
low-level visual processing to introduce additional constraints. To 
experiment with such ideas, "complete" vision systems were con- 
su-ucted (6) that used information at all levels, including both 
general knowledge about the imaging process as well as domain- 
specific information. By and large, however, the performance of 
these systems was not impressive. Many researchers therefore aban- 
doned the system building approach and concentrated on the study 
of specific visual abilities, possibly corresponding to identifiable 
modules in the human visual system (8). 

1970-1985: Modules and uniqueness. During the 1970s the field 
of computer vision became more mathematically sophisticated. 
Marr proposed a paradigm in which a vision system is conceptu- 
alized as a collection of individual autonomous components, or 
modules, each of which performs a different computational task 
(5). The low-level modules operate directly on the image data in 
order to recover useful 2D descriptions. The middle-level modules 
use these descriptions to perform 3D recovery; and the high-level 
modules use the results of recovery to reason about the world. 

Low-level vision modules are devoted to extracting "simplen 
representations of the image intensity array that have some general 
physical significance. Tasks of particular interest at the low level are 
image restoration (that is, estimation of the true intensities in a 
degraded image); edge detection; segmentation into homogeneous 
regions; and texture representation. 

Low-level modules operate on the image intensities and make no 
use of higher level knowledge about the scene. Some attempts were 
made to introduce such knowledge into edge detection and segmen- 
tation processes by treating them as image labeling processes and 
making use of local consistency constraints on the labels (9-10); but 
this approach did not provide a sufficiently flexible means of 
representing and integrating global knowledge. 

Middle-level modules use the results of the low-level modules as 
well as the image itself to recover the shapes, colors, spatial 
locations, and motions of objects in the scene. These modules make 
use of various cues in the image, such as shading, texture, contours, 
and motion. During this period many mathematical techniques were 
developed for describing object geometry (1 1) and computing scene 
properties on the basis of various types of information present in 
images (12-15). 

It turns out, however, that nearly all of these low- or middle-level 
visual tasks are ill-posed problems (16-17); they are undercon- 
strained and so do not have unique solutions. For example, consider 
the problem of recovering surface orientation from shading [the 
"shape from shading" problem (18)l. If we assume that reflectance 
is Lambertian (the object reflects light equally in all directions), the 
intensity I at a point (x,y) of the image is 

where p is a constant (the albedo) that depends on the surface 
material; @,A,,-1) is the direction of the light source; and (p, 
9,- 1) is the normal at the surface point whose image is (x,y). Thus 
measuring the intensity at any image point gives us one equation 
and two unknowns (p,q). Hence we cannot solve the shape from 
shading problem unless we impose additional constraints on the 
scene [see, for example, (19)l. The same is true for every recovery 
module. 

In general, suppose that we want to recover some quantity w 
which is a function of position in the image and which satisfies the 
equation L(w) = 0. Because in many cases the equation L(w) = 0 
is not enough to determine w, we need to make a further assump- 

Fig. 4. In a digital image, the image intensities (or brightnesses) are 
discretely sampled, and the sampled values are quantized to a discrete set of 
values, usually represented by integers. The elements of the resulting array of 
numbers are called pixels, and their values are called gray levels. In the figure, 
the array of numbers represents the array of intensities in the boxed portion 
of Sarah Bernhardt's eye. 
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tion about the scene. Let this assumption be of the form S(w) = 0; 
this equation constitutes an additional constraint. Such constraints 
can be of various forms and can be related to various propemes of 
the scene relevant to the quantities being computed. For example, if 
we need to compute surface shape, S(w) = 0 can impose the 
condition that the surface is smooth, in other words that shape 
variations are locally small, based on the fact that most surfaces are 
piecewise smooth. In color processing, S(w) = 0 can require that 
d a c e  reflectance be describable with a small number of basis 

Fig. 5. Recovery of surface geometry from image cues: (A) shading, (B) 
pattern, and (C) motion. The left column shows the image (or image motion 
field); the right column shows the reconstructed surface. In (A) the intensity 
at every image point, assuming a Larnbertian reflectance model, is 

To obtain a unique solution, we minimize the functional 

this gives the surface which is as smooth as possible whiie satisfying the 
constraint 1 = R. The parameter A weighs the relative importance of the two 
terms of the functional. 

In (B), asumhg that all the surface markings ("texeIsn) have the same surface 
area, the a m  of an image texel S, is related to the shape of the surface by 

where S, is the area of the surface texel, d is its distance from the viewer, and 
(A,B) is the centroid of the image texel. We obtain a unique solution by 
minimizing the same functional. 

In (C), assuming that we know how every point of a rotating object moves 
on its (orthographic) image, the surface shape (p, q) is related to the local 
image motion by a quadratic expression of the form f(p, q) = 0. As before, 
we obtain a unique solution by minimizing the same functional. 

functions (20), b d  on the small number of retinal pigments. In the 
p'ocessing of general nonrigid motion, S(w) = 0 can require that the 
deviation of the motion from rigidity be small. In segmenting an 
image into parts, S(w) = 0 can require that the segmentation be as 
simple as possible with respect to some complexity measure (21). 

During the 1980s, Poggio and his colleagues (16) suggested that 
ill-posed visual recovery problems can be solved with the technique 
of regularization. [For simplicity and for consistency with the 
mathematical theory of regularization (22), we shall call the addi- 
tional constraint S(w) = 0 a "smoothnessn condition even though it 
may not actually express the smoothness of the desired w. 
In general, S(w) = 0 expresses the fact that some function of w 
should be small.] The solution is then obtained by m i n h k i i g  a 
functional of the form J L2(w) + kS2(w). In other words, we find 
a solution that is as smooth as possible and at the same time satisfies 
the constraint L(w) = 0. The c d c i e n t  A determines the relative 
importance of smoothness in the solution. Figure 5 shows examples 
of surface recovery from shading and pattern cues, with the use of 
various functionals. 

The diiliculty with regularization is that it tends to smooth over 
discontinuities [places where the constraint S(w) = 0 is violated]; 
but the visual world is rich in discontinuities. Another problem with 
regularization is that we need a systematic way of choosing a value 
for the c d c i e n t  A. If A is small, the solution involves less 
smoothing over discon~uities, but it then tends to be more 
sensitive to noise. 

Some m m t  research areas (1985-present): Discontinuities and active 
vision. In the real world, the function w that we need to recover has 
discontinuities and discontinuous derivatives. Standard recovery 
techniques cannot deal l l l y  with this situation. 

One approach to dealing with discontinuities is to 6rst segment 
the image (23) into homogeneous regions and then to regularize 
within each region. However, segmentation is not a solved problem. 
One of the reasons for attempting to recover the quantity w is to 
facilitate segmentation. 

Another approach is to divide the image into boundary and 
nonboundary points. Assume there is a known probability that a 
random point is a boundary point and that at boundary points all 
values of S are equally likely. At nonboundary points, minimizing 
J [ L ~  + A SZ] is acceptable except that we do not excessively penalize 
large S (because lake S means a probable boundary point). Thus we 
can minimize, for example, J [ L ~  + AgdS)] wheregdS) = min 
(s2, T2). Here T is a threshold depending on the fraction of points 
that are discontinuities. 

This problem has been studied in the case where w has discrete 
range (for instance, if w is a binary function) and the domain is a 
discrete lattice (24). This approach was later extended to the case 
where w is real-valued (25) and to a continuous domain (26). The 
minimization problem is solved with Monte Carlo techniques or 
deterministic approximations to them such as the mean-field approx- 
imation. In (27) the problem was solved by a continuation method 
called "graduated nonconvexity." The solution is generally not 
unique. All these methods of finding the solution are either not 
guaranteed to converge to a global minimum or cannot be known to 
be reasonably &cient. The assumption that all s2 < T~ are equally - 
good is also huestionable. 

Other approaches have been proposed (28-29). Some of these a p  
proaches first 6nd the boundary points (at which A can be set equal to 0); 
others make the amount of smoodmg depend on the gradient magni- 
tude (we smooth more where the gradient is small); still others allow 
some smoothing at boundary points, but only in the gradient direction 
("oriented smoothnessn). These theories can be augmented to i n c o v  
rate the assumption that boumhies are smooth except at a few comer 
points, or other assumptions about boundary shape. 
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Table 1. How observer activity simplifies recovery problems (32). 

Problem Passive observer 

Shape from shading Ill-posed problem. Needs to be regularid. 
Even then, unique solution is not 
guaranteed because of nonlinearity. 

Shape from contour Ill-posed problem. Has not been regularized 
up to now in the Tichonov sense. 
Solvable under restrictive assumptions. 

Shape from texture Ill-posed problem. Needs some assumption 
about the texture. 

Structure from motion Well posed but unstable. Nonlinear 
constraints. 

Active observer 

Well posed and stable. Linear equation; unique solution. 

Well-posed problem. Unique solution for either 
monocular or binocular observer. 

Well-posed problem. N o  assumption required. 

Well posed and stable. Quadratic constraints, simple 
solution methods, stability. 

Another approach (30) is based on the observation that the errors 
and smoothness measures of nearby points are correlated and that we 
should therefore use terms involving the derivatives of L and S in the 
minimhation problem. This makes it unnecessary to make a rigid 
binary distinction between boundary and nonboundary points and to 
recover w while smoothing as little as possible over discontinuities. 

Research will continue on the solution of ill-posed problems in 
which the quantity to be recovered is a function with discontinuous 
derivatives and better algorithms will be developed. However, it 
should be pointed out that any recovery technique must be based on 
assumptions about scene and noise models. The dependence on a 
noise model leads to serious difficulties, because standard noise 
models are not adequate to describe images of real scenes. A scene 
often contains "clutter" which is hard to model. Simple geomemc 
and photometric models for a class of 3D scenes do not give rise to 
simple models for the 2D images of these scenes. For example, a 
quadratic Lambeman surface gives rise to a mgonomemc shading 
function in the image. Statistically stationary surface markings in the 
scene do not necessarily yield stationary intensity fluctuations in the 
image; conversely, the stationarity of an image property is not 
necessarily due to the stationarity of the corresponding scene 
property. In spite of these difficulties, the quest for noise-insensitive 
recovery algorithms continues and can be expected to lead to a series 
of increasingly robust methods. 

It was observed in the mid-1980s (31-32) that many visual 
recovery problems become easier if the observer is active, that is, it 
can control its visual apparat-for example, by making (known) 
"eye movements." It turns out that most of the low- and middle- 
level vision problems become much easier to solve (and often even 

become well-posed) for an active observer. Examples of this phe- 
nomenon are shown in Table 1 (32). Observer activity is also a 
central theme in the design of "animate" or "purposive" vision 
systems, which will be discussed below. 

Recognition and navigation. After the 3D structure of the scene has 
been recovered from the images, the information can be used in a 
variety of ways. Objects of given types can be detected and located 
in the scene by finding parts of the scene that match stored object 
descriptions. (Of course, in many cases this can be done without first 
recovering 3D structure.) Knowing the structure of the scene allows 
a mobile robot (or a robot manipulator) to move around while 
avoiding obstacles. Object recognition and navigation are the two 
major areas of application of 3D computer vision. Many systems 
have been designed for recognizing given classes of objects from 
their geomemc descriptions (33). Other systems have demonstrated 
successful control of robot movements using visual feedback; recent 
demonstrations involve autonomous outdoor vehicles that can drive 
on roads under computer control (34-36) (Fig. 6). 

A New Paradigm: Purposive Vision 
In recent years the realization has grown that it is very difficult to 

create an accurate 3D description of the visible world from images. 
The recovery paradigm, which regards a vision system as a set of 
low- and middle-level modules that recover the structure of the 
scene, and that provide input to high level modules which can then 
reason about the scene, has not led to the design of successful vision 
systems, that is, systems that robustly perform recognition or 
navigation tasks by means of vision. 

General 3D scene recovery is a very hard problem. Many recovery 
problems are inherently unstable [see, for example, (37-38)]. In 
order to correctly recover we may need to formulate new classes of 
scene and noise models. General recovery would provide a powerfd 
theoretical basis for solving recognition and navigation problems. 
However, we should not assume that practical results will flow out 

Fig. 6. The Autonomous Land Vehicle, a project sponsored at Martin 
Marietta Corp. by the Defense Advanced Research Projem Agency 
(DARPA). The vehicle carried TV cameras and computers, and drove itself 
along a road network using information about road geometry derived from 
the TV images. 

of successful theories rather than vice-versa. In the past, it has at least 
as often been the case that successful theories have been constructed 
on the basis of engineering observations. 

For many of the problems we need to solve using vision, complete 
and accurate recovery of the scene is not necessary. Brooks (39) has 
suggested that it is not necessary to achieve artificial intelligence 
before we can build successful robots. On the contrary, Brooks 
claims that we can achieve A1 by building robots, starting with 
simple ones and progressing to more complex ones. He has dem- 
onstrated how to build simple robots that have primitive behaviors 
(see his article in this issue). 

Coming back to fundamentals, we should once again ask the basic 
question: What is vision for? Why does an organism (or a robot) 
need vision? Obviously, organisms use vision to accomplish various 

13 SEPTEMBER 1991 ARTICLES 1253 



tasks-for example, to recognize danger, food, and so on. Orga- 
nisms have goals and purposes, and visual information makes it 
possible, or easier, to achieve these goals. It has been suggested (40) 
that perhaps vision can be more readily understood in the context of 
the vision-guided behaviors that the system (the organism or the 
robot) is engaged in. 

This suggestion leads to the important realization that specific 
vision-guided behaviors may not require a very elaborate represen- 
tation of the 3D world. If we are looking for an object that can be 
used for a certain purpose, we may only need to recognize some of 
its qualitative characteristics; we don't need to know its exact shape. 
Similarly, if we need to find a path out of a room, we don't need to 
know the exact shapes of all the pieces of furniture in the room. For 
many vision-guided behaviors, the visual processing needed is 
relatively simple; it does not require extensive numerical analysis, 
but involves only simple qualitative techniques that provide yes/no 
answers about the scene. For example, an active observer can 
robustly detect independently moving objects in its vicinity and can 
estimate their trajectories, using simple analyses of the image motion 
field (42). The results of this partial recovery can be used to control 
various behaviors, such as dodging or catching an object. 

This new paradigm of task-oriented, or purposive, vision, empha- 
sizing the study of specific vision-guided behaviors, will accelerate 
progress in the field and will lead to systems having robust, reliable 
performance. At the same time, the paradigm can be used to study 
the theory of visual perception by developing and analyzing generic 
vision-based behaviors. However, the paradigm still lacks theoretical 
foundations, including a formal definition of a visual agent and the 
dependence of behavior on agent characteristics (size, mobility, and 
so forth); a formal definition of behavior (as a sequence of percep- 
tual events and actions); and a calculus of behaviors or purposes that 
can generate new behaviors by combining existing behaviors or by 
learning and that can provide the basis for controlling the agent; and 
a corresponding repertoire of visual routines (42). The paradigm 
treats vision as part of a larger system, with increasing emphasis on 
high-level reasoning about the world, and will require interdiscipli- 
nary approaches. The study of vision in organisms and computers 
continues to be a rich source of interesting research problems. 

Those living organisms that have vision exhibit impressive abili- 
ties to interact with their environments. This performance consti- 
tutes a challenge to computer (and robot) vision; at the same time, 
it serves as an existence proof that the goals of computer vision are 
attainable. 

The theoretical foundations of computer vision are not yet M y  
developed; better models for noisy, cluttered real-world scenes, and 
better ways of solving ill-posed problems in the presence of discon- 
tinuities, are needed. Meanwhile, more attention should be paid to 
tasks that require only partial descriptions of the scene, because such 
tasks tend to be better-posed and less computationally costly. 
Organisms seem to require only partial scene descriptions (of 
various types) in order to perform visually guided behaviors; 
similarly, the ability to construct appropriate partial scene descrip- 
tions from images may be all that a computer or robot vision system 
needs to function successfully in its environment. 

Computer vision techniques have many practical applications in 
such domains as document processing, industrial inspection, medi- 
cal imaging, remote sensing, reconnaissance, and robot guidance. 

There have been successes in many of these domains, but many tasks 
are still beyond our current capabilities. These potential appliEations 
provide major incentives for continued research. 
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