
Natural Language Processing 

Natural language processing (NLP) is the study of math- 
ematical and computational modeling of various aspects 
of language and the development of a wide range of 
systems. These include spoken language systems that 
integrate speech and natural language; cooperative inter- 
faces to databases and knowledge bases that model aspects 
of human-human interaction; multilingual interfaces; 
machine translation; and message-understanding sys- 
tems, among others. Research in NLP is highly interdis- 
ciplinary, involving concepts in computer science, linguis- 
tics, logic, and psychology. NLP has a special role in 
computer science because many aspects of the field deal 
with linguistic features of computation and NLP seeks to 
model language computationally. 

L ANGUAGE (SPOKEN AND WRITTEN) IS CENTRAL TO ALL 

aspects of our communication. Therefore natural language 
processing systems (NLP), both current and future, are 

bound to play a crucial role in our communication with machines 
and even among ourselves. The importance of NLP to progress in 
telecommunications and computer science cannot be underestimat- 
ed. NLP systems include systems for speech recognition, language 
understanding, and language generation. Spoken language systems 
are those that integrate speech and language systems. Such systems 
provide an interface to databases and knowledge bases (airline 
information and reservation systems, for example), expert systems 
for scheduling, planning, and maintenance, among others. Text 
processing and message understanding systems are usehl for ex- 
tracting information from texts and formating it in a variety of ways 
for hrther use. Language communication often occurs in two or 
more langbages. Multilingual NLP has applications to a variety of 
multilingual interfaces ranging from providing aids for translating 
foreign language correspondence, translating equipment manuals, 
and speech-to-speech translation in limited domains, among others. 

NLP is concerned with (i) the study of mathematical and 
computational models of the structure and function of language, its 
use, and its acquisition and (ii) the design, development, and 
implementation of a wide range of systems as mentioned above. On 
the theoretical side, the study involves mathematical and computa- 
tional modeling of syntax, semantics, pragmatics (that is, certain 
aspects of the relationship of the speaker and the hearer, or user and 
the system in the case of an NLP system), and discourse aspects of 
language. These investigations are interdisciplinary and involve 
concepts in computer science including artificial intelligence, lin- 
guistics, logic, and psychology. NLP has a very special role because 
many branches of computer science deal with linguistic aspects of 
computation and NLP aims to model language computationally. 
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This mutual relationship has roots in the history of logic and 
linguistics and has been especially visible since the mid-1950s. It is 
also important for the key role NLP plays in cognitive science. 

It is impossible to cover the whole range of theoretical and 
practical issues in NLP in the limited space available. I have 
therefore selected three topics for detailed discussion: (i) grammars 
and parsing, an active theoretical area in NLP; (ii) statistical 
approaches to NLP, which entail the use of very large quantities of 
data in the development of the theories, a relatively new trend in 
NLP; and (iii) multilingual processing, a rich domain for testing 
current and new formalisms in all aspects of NLP and integrating a 
variety of techniques in NLP for a very important application such 
as machine translation. 

This article is clearly not a survey of the entire field of NLP; it is 
not even a comprehensive survey of the three selected areas. Many 
major topics have been omitted, all of which are very important to 
NLP. I have not discussed speech recognition and synthesis at all, 
and in the language area, I have not discussed planning and 
discourse structure, which are crucial to natural language under- 
standing and generation and their applications to cooperative 
interfaces (1). 

Grammars and Parsers 
Almost every NLP system has a grammar and an associated 

parser. A is a finite specific&on of a potentially infinite 
number of sentences, and a parser for the grammar is an algorithm 
that analyzes a sentence and assigns one or more structural descrip- 
tions to the sentence according to the grammar, if the sentence can 
be characterized by the  he structural descriptions are 
necessary for hrther processing, for example, for semantic interpre- 
tation. Chomsky's work on formal grammars in the late 1950s was 
the beginning df the investigations-of mathematical and computa- 
tional modeling of grammars (2) .  He introduced a hierarchy of 
grammars (finite state grammars, context-free grammars, context- 
sensitive grammars, and unrestricted rewriting systems) and inves- 
tigated their linguistic adequacy. 

Many NLP systems are based on context-free grammars (CFG). I 
will briefly describe CFGs. A CFG, G, consists of a finite set of 
nonterminals (for example, S: sentence; NP: noun phrase; W: verb 
phrase; V: verb; ADV: adverb), a finite set of terminals (for 
example, Harry, peanuts, likes, passionately), and a finite set of rewrite 
rules of the form A + W . where A is a nonterminal and W is a 
string of zero or more nonterminals and terminals. S is a special 
nonterminal called the start symbol. In Fig. 1 a simple example of a 
CFG is given. The rewrite rules in the left column are called syntactic 
rules and the rules in the right column are called lexical rules, as these ., 
rules rewrite a nonterminal into terminals or lexical items. A 
derivation in a grammar begins with S, the start symbol. S is 
rewritten as a s t rhe  of nonterminals and terminals. with the use of " 
a rewrite rule applicable to S. The new nonterminals are then 
rewritten according to the rewrite rules applicable to them, until no 
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Harry likes peanula pns~ionately 
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Fig. 1. A context-free grammar. 

further rules can be applied. It is easy to see that the sentence Harry likes 
peanuts passionately can be generated by the grammar. In Fig. 1, the 
tree on the right shows the structural description assigned by the 
grammar to the sentence spelled out by the lexical items appearing 
at the frontier nodes of the tree. A finite-state grammar is like a CFG, 
except that the rewrite rules are of the formA + aB orA + a, where 
A and B are nonterminals and a is a terminal symbol. A context- 
sensitive grammar is also like a CFG, except that the rewriting of a 
nonterminal is dependent on the context surrounding the nonter- 
mind, unlike the rewrite rules in CFG where the rewriting is 
context-independent. 

CFGs, as defined above, are inadequate for a variety of reasons 
and need to be augmented. The two main reasons are as follows: (i) 
The information associated with a phrase (a string of terminals) is 
not just the atomic symbols used as nonterminals. A complex bundle 
of information (sets of attribute-value pairs, called feature struc- 
tures) has to be associated with strings, the syntactic category of the 
phrase being only one such feature, for example. Appropriate 
structures and operations for combining them are needed together 
with a CFG skeleton. (ii) The string combining operation in a CFG 
is concatenation, that is, if u and v are strings, v concatenated with 
u gives the string w = uv ,  that is, u followed by v .  More complex 
string-combining as well as tree-combining operations are needed to 
describe various linguistic phenomena. I will illustrate these two 
kinds of augmentations by some simple examples. 

CFG-Based Unification Grammars 
A feature structure consists of a set of attribute-value pairs, where 

a value may be atomic or may be another feature structure. In Fig. 
2, the feature structure X ,  consists of a feature cat (category) whose 
value is NP and a feature head whose value is another feature 
structure. This feature structure has only one attribute, agreement, 
whose value is another feature structure with attributes number and 
person with values singular and third respectively. X ,  is a feature 
structure that can be appropriately associated with the phrase Fido. 
Similarly X ,  is a feature structure than can be appropriately associ- 
ated with the phrase snores. The context-free rewriting rule X ,  + 

X ,  X ,  can be interpreted as an instruction for combining the strings 
Fido and snores to give the string Fido snores and building the feature 
structure X ,  to be associated with it, as shown in Fig. 2. This little 
example illustrates the main idea behind CFG-based unification 
grammars (3). 

The main operation for combining feature structures is called 
unification. Given two feature structures A and B ,  we get a new 
feature structure C by unifying A and B ,  which has all the 
information in A and all the information in B and no more. Of 
course, ifA and B have contradictory information, thenA and B will 
fail to unify. A variety of grammars such as Generalized Phrase 
Structure Grammar (GPSG) (4 ) ,  Head Driven Phrase Structure 
Grammar (HPSG) (5) and Lexical Functional Grammar (LFG) (6)  

are essentially based on CFG-based unification grammars. An 
introduction to unification-based grammars appears in (3). Unifica- 
tion is a very powerfbl operation and, unless restricted, CFG-based 
unification grammars are Turing-Machine equivalent (that is, their 
computing power equals the power of a general-purpose computing 
machine with unlimited working tape). From a linguistic point of 
view, these grammars have to be restricted so that their descriptive 
power is no more than necessary, and from a computational point of 
view, they have to be restricted in order to yield efficient parsing 
algorithms (7). Both these considerations form the basis for contin- 
ued research in this area. 

The logic-based approach to grammars also uses a restricted type 
of unification. In this approach, a grammar is viewed as a deductive 
system and derivations in a grammar can be viewed as deductions. 
Such grammars are typically embedded in a logic programming 
language such as Prolog (8). Recently, the Government and Binding 
theory of Chomsky has been implemented in a logic-based grammar 
(9 ) .  

Mildly Context-Sensitive Grammars 
In any mathematical or computational grammar, a wide range of 

dependencies among the different elements in the grammar have to 
be described. Some examples of thes'e dependencies are as follows: 
(i) Agreement features such as person, number, and gender. For 
example, in English, the verb agrees with the subject in person and 
number. (ii) Verb subcategorization, in which each verb specifies 
one (or more) subcategorization frames for their complements. For 
instance, sleep does not require any complement, (as in Harry sleeps), 
like requires one complement (as in Harry likes peanuts), give 
requires two complements (as in Harrygives Susan a j o w e r ) ,  and so 
forth. (iii) Sometimes the dependent elements do not dppear in their 
normal positions. In Who,  did John invite ei where ei is a stand-in for 
who, whoi the filler for the gap e,. The filler and the gap need not be 
at a fixed distance. Thus in who, did Bill ask John to invite e ,  the filler 

r cat : NP 1 

[ cat : S 

": I head : (value is the same as the value 
of the head feature of X2) 

Fig. 2. CFC-based unification grammar. 

13 SEPTEMBER 1991 ARTICLES 1243 



and the gap are more distant than in the previous sentence. (iv) In the combinatory categorical grammar (CCG) in Fig. 3 (bot- 
Sometimes the dependencies are nested. In German, for example, tom), each word is assigned a category, atomic or composite. The 
one could have Hans, Peterj Marie, schwimmen, lassen, sah, (Hans saw 
Peter make Marie swim), where the nouns (arguments) and verbs 
are in nested order, as the subscripts indicate. (v) However, in 
Dutch, these dependencies are crossed, as for example, in Jan, Pie$ 
Marie, zag, latenj zwemmen, (Jan saw Piet make Marie swim). There 
are, of course, situations where the dependencies have more complex 
patterns. 

Precise statements of such dependencies and the domains over 
which they operate constitute the major activity in the specification 
of a grammar. Mathematical and computational modeling of these 
dependencies is one of the key areas in natural language processing. 
Many of these dependencies (for example, the crossed dependencies 
discussed above) cannot be described by context-free grammars 
(10-12). 

In the context-free grammar (CFG) in Fig. 1 the dependency 
between a verb (likes) and its two arguments [subject (NP) and 
object (NP)], is specified by means of two rules of the grammar. It 
is not possible to specify this dependency in a single rule without 
giving up the VP (verb phrase) node in the structure. That is, if we 
introduce a rule, S -+ NP V NP, then we express the dependency in 
one rule, but then we cannot have VP in our grammar. Hence, if we 
regard each rule of a CFG as specifying the domain of locality, then 
the domain of locality for a CFG cannot locally (that is, in one rule) 
encode the dependency between a verb and its arguments, and still 
keep the VP node in the grammar. 

In the tree-adjoining grammar (TAG) in Fig. 3 (top), each word 
is associated with a structure (tree) (the word serves as an anchor for 
the tree) which encodes the dependencies between this word and its 
arguments (and therefore indirectly its dependency on other words 
which are anchors for structures that will fill up the slots of the 
arguments). Thus for likes, the associated tree encodes the argu- 
ments of likes (that is, the two NP nodes in the tree for likes) and 
also provides slots in the structure where they would fit. The trees 
for Harry and peanuts can be substituted, respectively, in the subject 
and object slots of the tree for likes. The tree for passionately can be 
inserted (adjoined) into the tree for likes at the VP node. In a TAG, 
the entire grammar consists of lexical items and their associated 
structures. There are universal operations, substitution, and adjoin- 
ing which describe how structures can be combined (13-15). 

Tree Adjoining Grammar (TAG) 

s Opemiions 

A 
~l w A (1) Substitution (for nodes 

A 1 VP ADV 
marked with 1) 

/ \ 
v W l  -* 
I 

I (2) Adjoining 
parlm-1~ 

Combinatory Categorial Grammars (CCG) 

Lezial Categories 
Operations 

likes: (S\NP)/NP (composite) 

Hany: NP (atomic), S/(S\NP) (composite) (1) function application 

peanuts: NP (atomic) 

passionately: (S\NP)\(S\NP) (composite) 
(2) function composition 

Fig. 3. Two grammar formalisms with domains of locality larger than the 
domain of locality for CFG. (Top) Tree-adjoining grammar. (Bottom) 
Combinatory categorical grammar. 

category for Harry and peanuts is NP, an atomic category. For likes, 
the category is (S\P)/NP. This expression encodes the information 
that likes has two arguments. The category can be interpreted as a 
function, which when applied to an a&ent NP (thebbject) on 
the right, returns (S\P), which is also a function. This function, 
when applied in turn to an argument NP (the subject) on the left, 
returns S (sentence). In this representation, (S\P) serves the same 
role as VP. In a CCG, the entire grammar consists of lexical items 
and their category assignments. There are two universal operations, 
function application and h c t i o n  composition, which describe how 
categories are combined. Note that passionately is combined with likes 
peanuts by function composition. CCG also allows type raising. For 
example, Harry has the category NP, but we can also assign another 
category to Harry, namely S/(S\P), that is, a function requiring a 
verb-phrase on the right and returning S. This category assignment is 
appropriate only if Harry is in the subject position (16, 17). 

Both CCG and TAG have domains of locality that are larger than 
that for CFG, because in each case all the arguments of the verb likes 
are encoded in structures associated with the verb and yet, the node 
VP (= S\P in CCG) is available. The larger domain of locality allows 
TAG to completely factor out recursion-from the domain of depen- 
dencies, thus localizing all dependencies in the elementary trees (14). 
For the linguistic significance of CCG and TAG, see (16-20). 

TAG and CCG are very similar. In fact, they have been shown to 
be formally equivalent with respect to their weak generative capacity 
(that is, the sets of sentences they generate). They are more p o w e m  
than CFG and belong to a class of grammars that we call mildly 
context-sensitive grammars (MCSG) (21). This class preserves many 
of the essential properties of CFG and yet is able to provide enough 
power to capture a wide range of dependencies of language struc- 
ture. such as the crossed dependencies we discussed earlier. Several 
other recent formalisms, for example, Linear Indexed Grammar and 
Head Grammar, have also been shown to be equivalent to TAGS 
(21-23). This equivalence of a number of linguistically motivated 
grammars based on quite distinct insights into the structure of 
language has led to the search for invariances across this class of 
grammars, these invariances being more important in some sense 
than the individual grammars (21). 

We have been implicitly assuming that a grammar assigns a 
unique structure to a sentence (assuming that the sentence is 
unambiguous). Thus for example Harry likes peanuts will be brack- 
eted as-follows (ignoring the phrase labels and ignoring some 
brackets not essential for our present purpose): 

(a) (Harry (likes peanuts)) 
It is possible in a CCG to assign multiple structures to  unambig- 

uous sentences (16). Thus CCG assigns the following two group- 
ings to Harry likes peanuts: 

(b) ((Harry (likes peanuts)) 
(c) (((Harry likes) peanuts) 
The justification for such multiple structures is their use in 

coordinations (for example, with and) and in defining intonational 
phrases. Thus the bra&eting (b) is necessary f o r  (d) and the 
bracketing (c) for (e). 

(d) ((Harry ((likes peanuts) and (hates cashews))) 
(e) ((((Harry likes) and (Bill hates)) cashews) 
Also, (b) corresponds to the intonational phrasing if the previous 

context is (f) and (c) if the previous context is (g). 
(f) (Who like peanuts? (Harry (likes peanuts)) 
(g) (What does Harry like? ((Harry likes) peanuts) 
The flexibility in the assignment of structure is achieved by giving 

up the notion of a canonical structure. Thus in Fig. 3 (bottom), if 
Harry is assigned the category S/(S\P), it can either combine with 
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So: initial state So: ha1 state 

Fig. 4. A finite state machine generating sentences. 

likes by function composition giving the structure in (c) above, or it 
can apply to the predicate likes peanuts to yield (b) above (16). 
However, it is not necessary to give up the notion of canonical 
structure. It is possible to maintain a fixed structure at a certain level 
(at the level of elementary trees in a TAG, for example) and still 
achieve the kind of flexibility needed for examples shown above 
(24). Similar results can be obtained in the Head-Driven Phrase 
Structure Grammar (HPSG) framework (25). 

Parsing Complexity 
A parser for a grammar is an algorithm that assigns to a sentence 

one or more structural descriptions according to the grammar, if the 
sentence is generable by the grammar. Parsing of sentences accord- 
ing to different grammars and the complexity of this process are 
important research areas in NLP. For a CFG a number of parsing 
algorithms are known and the time required to parse a sentence of 
length n is at most ~n~ where K depends on the size of the grammar. 
This result extends to almost all CFG-based grammars used in NLP. 
The constant K can become very large however. In practice, of 
course, the worst case complexity is really not the important 
measure. Most parsers perform much better than the worst case on 
typical sentences. [A similar situation holds for morphological 
analyzers, that is, analyzers which break words into their parts (26).] 
There are no mathematical results, as yet, to characterize the 
behavior on typical sentences. Grammars that are more p o w e m  
than CFG are, of course, harder to parse, as far as the worst case is 
concerned. The grammars in the class of Mildly Context-Sensitive 
Grammars discussed earlier can all be parsed in polynomial time just 
as CFG, however, the exponent for n is 6 instead of 3. For some 
further tesults on complexity, especially in the context of the 
so-called principle-based parsing of the Government and Binding 
Theory Grammar, see (27, 28). 

A crucial problem in parsing is not just to get all possible parses 
for a sentence but to rank the parses according to some criteria. If a 
grammar is combined with statistical information (see below), then 
that information can be used to provide this ranking. This is exactly 
what is done in many spoken language systems, that is, systems that 
integrate speech recognition and language processing (29). 

In the discussion so far, I have been assuming that the parser only 
handles complete sentences and the parser either succeeds in finding 
the parse(s) for a sentence or it fails. In practice, we want the parser 
to be flexible-that is, it should be able to handle fragments of 
sentences-and it should fail gracefully-that is, it should provide as 
much analysis as possible for as many fragments of the sentence as 
possible, even if it cannot glue all the pieces together. A parser with 
such properties based on the idea of deterministic parsing (30) has 
been described in (31) and used in the construction of a large corpus 
of parsed text, a tree bank (32). 

Finally, the actual grammars in major NLP systems are large, but 

even with this large size their coverage is not adequate. Building the 
grammar by hand soon reaches its limit and there is no guarantee 
that it will be increasingly better in coping with free text (say, text 
from a newspaper) by continuing to build it manually. Increasing 
attention is being paid now to automatically acquiring grammars 
from a large corpus (32). (See below for some further details.) 

Statistical Approaches to Natural Language 
Processing 

There is a long history of modeling language statistically. After all, 
some words occur more frequently than other words (for example, 
the occurs more frequently than man, which occurs more frequently 
than aardvark), some two-word sequences appear more frequently 
than some other two-word sequences (for example, a man occurs 
more frequently than old man, which occurs more frequently than 
green man), and so forth. Hence, it is reasonable to believe that 
language can be modeled statistically. A specific proposal along these 
lines was made by Shannon in 1948 (33). He viewed the generation 
process as modeled by stochastic processes, in particular, a Markov 
process. For the present purpose, I will characterize sentence 
generation by a finite state machine (Fig. 4). Given a state diagram, 
I generate a sentence by starting with the initial state and then 
traversing the diagram from state to state and emitting the word 
labeling the arc between a pair of states. The process ends when I 
reach the final state. A probability is assigned to each state transition 
together with the emitted symbol, that is, to a triple (S,, 3, Sk) 
representing the transition from state Si to state Sk emitting the 
symbol aj. Although such machines are clearly relevant to modeling 
language statistically, Chomsky (34) rejected the finite-state machine 
characterization as inappropriate for modeling grammars, for the 
following reason: In Fig. 4, lives is four words away from man, 
assuming that I did not follow the loop at S,. Hence the dependency 
between these two words can be captured by the state sequence from 
S, to S,. However, in the sentence The man who the woman Harry 
met yesterday telephoned lives in Philadelphia, (one that is a bit difficult 
to process but grammatical, and not generable by the machine in 
Fig. 4), lives is now seven words away from man. Because more 
clauses can be embedded and edch clause can be lengthened by 
adding adjectives or adverbs, the distance between lives and man can 
be made arbitrarily large and thus the number of states required to 
model language cannot be bounded. Hence a finite-state machine is 
inadequate. Chomsky also rejected the possibility of associating the 
probability of a sentence with its grammaticality (the higher the 
probability, the higher the grammaticality of the sentence). This is 
because if I order the sequences of a given length (there will be W 
such sequences, if W is the number of words and n is the length of the 
sequences) according to the probabilities of the sequences then it will 
not be possible to sort out grammatical and ungrammatical sequences 
on the basis of this ranking (34). Chomsky then developed structural 
models, such as the phrase structure grammar and transformational 
grammar. which formed the basis for almost all of the work in 
Lathemahcal and computational linguistics up until the present. 

Although Chomsky rejected the statistical models, he commented 
(34, p. 17): "Given the grammar of language, one can study the use 
of the language statistically in various ways; and the development of 
probabilistic models for the use of language (as distinct from the 
syntactic structure of language) can be rewarding. . . . One might 
seek to develop a more elaborate relation between statistical and 
syntactic structure than the simple order of approximation model I 
have rejected. I would certainly not care to argue that any such 
relation is unthinkable, but I know of no suggestion to this effect 
that does not have obvious flaws. . . ." 
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Harris, around 1957, proposed a transformational theory (35) 
motivated by the considerations of normalizing sentence structures 
(36) so that the relevant co-occurrences among words can be stated 
in a local manner. Very roughly speaking, under this view, The man 
who Harry met yesterday lives in Philadelphia, is made up of S l :  The 
man lives in Philadelphia and S2: who Harry met (which is a 
transformed version of S3: Harry met the man, with S1 and S3 
sharing the man) and so on. There are clearly "meaningful" statistical 
dependencies between lives and the subject noun man and the object 
of in, namely, Philadelphia, and between met and Harry, the subject 
of met, and man the object of met, but not "meaningful" statistical 
dependencies between lives and yesterday or met yesterday (the 
one-word and two-word sequences before lives) and so on. 

Although statistical approaches did not play a significant role in 
mathematical or computational linguistics, it is clear that the idea of 
somehow combining structural and statistical information was 
already suggested as early as the late 1950s. Now in the 1990s, there 
is a resurgence of these early ideas. There are two key reasons for this 
renewed interest. First there are now some formal frameworks 
which appear to be suitable for combining structural and statistical 
information in a principled manner and second, there is now the 
possibility of using very large corpora, annotated in various ways 
that can be used for reliably estimating the various statistics needed 
to deduce linguistic structure (32). 

I will now give a few examples to show how structural and 
statistical information can be integrated. Context-free grammars 
(CFG) have been used extensively in modeling grammars. Each rule 
(production) in a CFG can be associated with a probability of its 
use. Thus, given a CFG with rules: ( R l )  S + NP VP (0.9) (R2) S 
+ NP NP V (0.1), (R3) VP + V NP (0.7), (R4) VP -. V (0.3), 
I have associated probabilities with each of the rules. The probabil- 
ities of all rules associated with a given nonterminal add up to 1. The 
probability of a sentence (more precisely the derivation of the 
sentence in the grammar) is simply the product of the probabilities 
of each rule in the derivation because the grammar is CFG and the 
application of a rule depends only on the nonterminal on the left- 
hand side of a rule and not on the context in which this nonterminal 
appears in a derivation. Probabilistic parsing methods and methods 
for estimating the probabilities of the rules from a training corpus 
are given (37). By making the probability associated with each rule 
somewhat context-dependent, for example, making it dependent on 
the preceding rule in the derivation, considerable improvement in 
the estimation of the probabilities and performance of the parser (in 
terms of getting correct parsers) can be achieved (38). 

As I have mentioned, the redy "meaningful" statistical depen- 
dencies are between words (lexical items) mediated most likely by 
grammatical relations. For example, there will be "meaningful" 
statistical dependencies between the verb eats, and the lexical items 
that can appear as subject and object of eats. CFGs and their 
generalizations are not directly based on lexical items, that is, they are 
not lexicalized, and in general, cannot be lexicalized (15). Lexicalized 
grammars, as described earlier, are more appropriate for integrating 
structural and statistical information in a uniform manner. 

Two dependent words in a sentence can be an arbitrary distance 
apart, as discussed earlier. Hence, this dependency cannot be 
captured by one-word, two-word, three-word and n-word frequen- 
cies, for some fixed n (that is, uni-gram, bi-gram, tri-gram and 
n-gram statistics). However, in many situations these statistics work 
surprisingly well in determining some aspects of language structure. 
Tri-gram frequencies (of parts of speech-that is, syntactic catego- 
ries-and not words directly) have been used very successfully for 
discovering an optimum assignment of parts of speech to words (39, 
40). Almost d words are lexicdy ambiguous, that is, they belong to 
more than one category. For example, table is either a noun (N) or 

a verb (V); pale is either an adjective (ADJ) or an adverb (ADV); see 
can be a verb (V), an interjection (UM), or a noun (with capital S); 
round can be an adjective (ADJ), noun (N), verb (V), or an adverb 
(ADV), and so forth. The program in (39) uses a linear-time 
dynamic-programming algorithm to find an assignment of parts of 
speech optimizing the product of: (i) probability of observing a part 
of speech i, given the word j, and (ii) probability of observing part 
of speech i, given two previous parts of speech. Probability estimates 
are obtained by training on a tagged corpus [such as the well-known 
Tagged Brown Corpus (41)l. Error rates of only 3% to 4% have 
been reported (39), which compare very well with the error rate of 
human annotators. Similar techniques have been used to locate 
simple noun phrases with high accuracy (39). 

Statistical techniques in conjunction with large corpora (raw texts 
or annotated in various ways) have also been used to automatically 
acquire other linguistic information such as morphological informa- 
tion (that is, parts of words such as prefixes and s u e e s  and inflected 
forms), subcategorization information (see the earlier section on 
grammars and parsers for subcategorization information), semantic 
classes (such as classification of nouns, based on what predicates they 
go with; compound nouns such as jet engines, stock market prices; 
classification of verbs, for example, to know describes a state of the 
world, while to look describes events, and so on), and, of course, 
grammatical structure itself as I have already mentioned (38, 42-46). 
Such results have opened up a new direction of research in NLP, 
which is often described as corpus-based NLP. 

It should be clear from the previous discussion that, for the 
development of corpus-based NLP, very large quantities of data are 
required (the Brown Corpus from the 1960s is about 1 million 
words). Researchers estimate that about 100 million words will be 
required for some tasks. The technologies that will benefit from 
corpus-based NLP include speech recognition and synthesis, ma- 
chine translation, Ill-text information retrieval, and message under- 
standing, among others. The need for establishing very large text 
and speech databases, annotated in various ways is now well 
understood. It is recognized that no single organization can afford 
to create enough linguistic data even for its own research and 
development, let alone for the needs of the research community at 
large. This need, together with the size of the database and the need 
for sharing it, has been the key motivation for the plans for setting 
up a Linguistic Data Consortium (LDC) by DARPA (47). Initial 
plans of the LDC call for the collection of raw text (naturally 
occurring text from a wide range of sources, 5 to 10 billion words) 
annotated text (syntactic and semantic labeling of some parts of raw 
text, upwards of 20 million words), raw speech (spontaneous speech 
from a variety of interactive tasks, 400 hours, 2000 speakers), read 
speech (1,000 hours, 10,000 speakers), annotated speech (phonetic 
and prosodic labeling, 20 hours), a lexicon (a computational 
dictionary of 200,000 entries plus a term bank containing, for 
example, geographical, individual, and organizational names, 200 to 
300 thousand entries), and a broad coverage computational gram- 
mar. The LDC will also develop a variety of shareable tools. Some 
examples in the area of speech are: programs for segmentation of 
speech, alignment of speech and text, prediction of pronunciation 
options from orthographic transcription. Some examples from text 
area are: a program for breaking text into sentences, a statistical 
parts-of-speech tagger, an efficient program for computing n-gram 
statistics and a variety of other statistics over very large corpora (47). 

Multilingual Natural Language Processing 
Almost d linguistic theories and mathematical and computational 

models are formulated so that they are in principle applicable to 
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natural languages at large, and not just one or more specific 
languages. In fact, these theories and models attempt to capture 
aspects of language structure that are judged to be universal. Of 
course, only empirical and experimental work (across diverse lan- 
guages) can assess the validity of these theories or models. In this 
sense, all mathematical or computational work in natural language 
processing is multilingual.  ohe ever, this is not what is meant by 
multilingual processing. This term instead refers to the computa- 
tional models and the systems based on those models that deal 
with more than one language, of which a special and important 
case is machine-translation (MT). Multilingual processing, how- 
ever, is not limited to MT, in fact, MT itself is not viewed 
currently as consisting only of systems that completely map a 
source language into the target language, it may include a 
translation component together with other multilingual tools that 
make the entire system useful. 

The goal here is not to review the history of MT (quite rocky 
certainly in the United States). An excellent discussion of the status 
of MT can be found in (48-51) including a discussion of some of the 
well-known systems such as SYSTRAN, LOGOS, Mu, EURO- 
TRA, among others. The current trend of focusing on multilingual 
processing and treating MT as a part of this activity is expected to 
create a more stable environment for both basic research and the 
development of use l l  systems in NLP. 

A dlcussion of and parsers is clearly relevant to MT, as 
almost all MT systems have them as components. However, in the 
context of an entire MT system, the choice of a particular grammar 
and parser (and, of coursd, a generator, a topic fhave not discussed 
in this paper) at this stage of development is somewhat arbitrary 
(52). The grammar has to interface to many different components of 
an MT system, and this interface is not always smooth, and often 
overwhelms the considerations in the choice of the grammar. 
However, work on the MT problem is encouraging researchers to 
investigate properties of grammars from the point of view of their 
suitability for MT (53-56). 

MT systems are usually classified as either direct, transfer-based, 
or interlingua-based. In the direct approach, there are no interme- 
diate representations between the source language and the target 
language. The source language text is processed "directly" in order 
to transform it into the target text, essentially a word-to-word 
translation with some adjustments. This approach is not followed by 
any MT system at present on account of its obvious weakness 
attributable to eschewing all aspects of the internal structure of 
sentences. There is one exception however, the statistical system 
based on parallel texts briefly described at the end of this sectidn can 
be viewed, in a sense, as a "direct" system. 

In the transfer-based approach, information from the various 
stages of analysis from thdsource text is transferred to the corre- 
sponding stages of the generation of the target text, for example, 
transfer is achieved by setting up correspondences at the lexical level, 
at the grammar level, or at the level of the structures built by the 

and so forth. The transfer module obviously depends on 
a particular pair of languages. The source and target language 
representations on which the transfer is defined may also depend on 
the language pair but this need not be the case. In fact, some recent 

- - -  

work on transfer-based approach attempts to show how one can 
work with language-independent representations (see below). 

The interlingua-based approach depends on the claim that a 
suitable intermediate representation can be defined such that the 
source text can be mapped into the intermediate representation 
which can then be mapped into the target text. In principle, this 
approach is clearly attractive because, unlike the transfer-based 
approach, it is not necessary to build a separate transfer module for 
each pair of languages. However, it is not clear whether a truly 

language-independent intermediate representation can be devised. 
Current interlingua-based systems are much less ambitious about 
their claims to the universality of the intermediate representation. 
For a high-quality translation, it is often necessary to have access to 
some particular aspects of the source and target languages. It is not 
clear how the interlingua-based approach will handle these aspects in 
general without implicitly encoding these aspects of the source 
language and making this information available during generation 
from the intermediate representation to the target language. 

In the transfer-based approach, there have been some recent 
advances. In the development of mathematical and computational 
models of grammars there is increasing emphasis on locating 
syntactic as well as semantic information directly with the lexical 
items by associating structures with the lexical items and defining 
operations for composing these objects (see the section on gram- 
mars and parsers). From this perspective, all the information 
particular to a language is encapsulated in the lexical items and the 
structures associated with them. Different languages will be distin- 
guished at this level, but not with respect to the operations for 
composing these structures, which are the same for all languages, on 
this approach. The idea then, is to define all bilingual correspon- 
dences at this level. Some recent attempts along these lines are 
described in (54-56) and it remains to be seen if this approach can 
be carried out across a variety of languages. 

Conventional MT systems try to produce one translation for the 
source sentence, but, of course, in order to achieve this, as is well 
known, all kinds of other information is usually needed, such as 
discourse context (the previous text), the context of the situation 

\ A  , , 
(particularly, if it is a dialog), and a variety of domain-knowledge, 
exactly the kind of information that a natural language understand- 
ing a d  generation system needs. There has beeisome preliminary 
work on the so-called knowledge-based systems (57). So, in general, 
one might be tempted to say (and quite correctly in principle) that 
high-quality MT cannot be achieved without first solving the 
problem of natural language understanding and generation. The 
solution of this general problem is clearly not around the corner! 
However, in practice, there are a number of situations where this 
knowledge is available (albeit in highly constrained domains), can be 
acquired easily, or is indirectly there because the user(s) of the 
system is (are) in the loop if the MT system is interactive (58, 59). 
Some examples of such situations are: 

Highly constrained texts. Generation of multilingual texts from a 
source text which is prepared in a highly constrained, unambiguous, 
highly stylized language. Such a system is useful for preparing 
manuals in different languages. Here the system is really not 
translating a manual written in one natural language into a set of 
other natural languages, but rather is generating multilingual texts 
from a highly constrained text, thus avoiding many problems in 
conventional MT. 

The so-called sub-language-based MT systems also fall into this 
category. For example, in weather reports the sentences are usually 
short, highly stylized, and mostly employ a standard phraseology. A 
very well-known system (TAUM METEO) for translating weather 
reports from English to French has been in operation in Canada for 
some years (49). 

Interactive situations. High-quality translation of business corre- 
spondence using pre-translated fragments with slots to be filled in by 
interaction. The user collaborates with the system. The advantage of 
such a system is that "[it] only translates what it 'knows' it can 
translate accurately, with the result that the systems shows what MT 
can do, rather than what it cannot as in traditional MT' (60, p. 8). 
Such a system will automatically compose foreign language texts. 

A system to serve as the bilingual intermediary for the user in a 
dialogue with a conference office, desiring to obtain information 
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about a forthcoming conference. This system is a "dialogue M T  
system in the sense that is enters into a dialogue with the user about 
the translation and in that the object of the translation is the user's 
contribution to the dialogue" (60, p. 8). 

So far, I have been assuming that an M T  system will use a 
grammar and a parser of some sort. There are recent attempts to use 
purely statistical techniques along with pardel texts. There are 
parallel texts available in a pair of languages which are translations 
from one language to another, carried out by human translators. A 
well-known example is the Canadian Hansard, which contain the 
transcripts of the proceedings of the Canadian Parliament both in 
English and French. Such texts with several million words are 
available now. With the use of 3 million aligned sentences from the 
Hansard bilingual corpora and using only statistical techniques (the 
aligning itself is done statistically also), an MT system has been 
developed (61). There is considerable potential for such systems if 
they are suitably combined with some structural information, per- 
haps also obtained statistically. Aligned sentences from bilingual 
corpora have been used recently for constructing bilingual concor- 
dances and some multilingual tools, for example, providing transla- 
tions of content words of a message to help the user to translate the 
message, assuming the user has some knowledge of the source 
language (62). 

In summary, M T  and multilingual natural language processing, in 
general, is clearly a major application of NLP. It is providing a rich 
domain for testing current or new formalisms in d aspects of NLP. 
Large-scale useful M T  systems however, are, and will continue to 
be, based on a variety of techniques and tools in NLP. 

Future Prospects for NLP 
The trend of integrating speech and language will continue and 

we can expect much more robust spoken language systems, which 
also incorporate some aspects of discourse structure. More advanced 
and use l l  commercial systems for multilingual interfaces, machine 
translation, and message understanding systems will appear in the 
near future. Speech-to-speech translation systems will also appear in 
limited domains. Language systems will become even more integrat- 
ed with other modalities such as graphics (including pointing) and 
will be use l l  for many applications such as providing instructions 
for assembly or maintenance of complex equipment. NLP systems 
will also play a major role in educational systems and prosthetic 
systems. 

On  the theoretical side, the mathematical and computational 
work has given us deep insights into the working of language. 
However, language is an enormously complex system. Therefore, in 
a sense, the computational understanding of the structure and 
function of language is very primitive still. Further mathematical 
and computational work will provide us more unifying accounts of 
syntax, semantics, and pragmatic aspects of language. The use of 
language corpora and statistical techniques in NLP will continue to 
grow and we will see an integration of structural and statistical 
techniques in NLP leading to more robust systems. 

Finally, the mathematical, computational, and statistical work in 
NLP will contribute to psycholinguistic research which studies the 
human processing of language, a very important aspect about which 
I have not said anything in this paper. 
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Computer Vision 

The field of computer vision is devoted to discovering algo- 
rithms, data representations, and computer architectures that 
embody sthe principles underlying visual capabilities. This 
article describes how the field of computer (and robot) vision 
has evolved, particularly over the past 20 years, and introduc- 
es its central methodological paradigms. 

v ISION IS THE MOST POWERFUL SENSE FOR MANY LIVING 

organisms, including humans. We take it so much for granted, 
because it is ordinarily so effortless, that we often fail to seriously 

consider how it works. Students of visual perception work in diverse 
fields, including neuroanatomy and physiology, psychology, computa- 
tional and robot vision, and engineering. But researchers in Merent 
fields ask Merent questions about vision. Some ask empirical questions: 
How are existing biological visual systems actually designed? On the 
other hand, scientists and engineers try to answer theoretical and 
normative questions. The theoretical question in vision is, What is the 
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range of possible mechanisms underlying perceptual capabilities in vision 
systems? The normative question is, How should a pamcular class of 
vision systems (or robots) be designed so that it can efficiently perform 
a set of specific visual tasks? The three types of basic questions do not in 
general have the same answers. 

A very large part of the human brain is devoted to visual 
perception (1) (Fig. 1). Computational algorithms are implemented 
in this massive network of neurons; they obtain their inputs from 
the retina, and produce as output an "understanding" of the scene in 
view. But what does it mean to "understand" the scene? What 
algorithms and data representations are used by the brain? Analo- 
gously, given a set of images acquired by a TV camera, what 
computer architectures, data structures and algorithms should we 
use to create a machine that can "see" as we do? ( 2 4 )  (Fig. 2). 

Many organisms possess visual capabilities, and their visual sys- 
tems are not structured in the same way; moreover, they live in 
different environments and use vision for different purposes. But 
although a given visual capability, say for obstacle avoidance, is not 
necessarily implemented in the same way in the fly, the rat, and the 
human, the principles underlying this ability may be the same. It is 
these principles that are the subject of research in computer vision. 
As our understanding of visual principles advances, we can build 
robots that perform various tasks through the use of vision. 
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