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The performance of microprocessors has increased steadi- 
ly over the past 20 years at a rate of about 50%per year. 
This is the cumulative result of architectural improve- 
ments as well as increases in circuit speed. Moreover, this 
improvement has been obtained in a transparent fashion, 
that is, without requiring programmers to rethink their 
algorithms and programs, thereby enabling the tremen- 
dous proliferation of computers that we see today. To 
continue this performance growth, microprocessor de- 
signers have incorporated instruction-level parallelism 
(ZLP) into new designs. ILP utilizes the parallel execution 
of the lowest level computer operations-adds, multiplies, 
loads, and so on-to increase performance transparently. 
The use of ILP promises to make possible, within the next 
few years, microprocessors whose performance is many 
times that of a CRAY-1s. This article provides an over- 
view of ILP, with an emphasis on ILP architectures-
superscalar, VLIW, and dataflow processors-and the 
compiler techniques necessary to make ILP work well. 

MUCH OF THE DRAMATIC INCREASE IN THE PERFOR-

mance of microprocessors over the past 20 years has come 
from continuing improvements in processor architecture. 

Indeed, while overall performance has grown steadily at the com- 
pounded rate of about 50% per year, raw circuit speed has account- 
ed for less than half of that annual increase (1).The rest has been due 
to such factors as an increase in word size from 8 bits to 32 bits, a 
move from complex instruction sets (CISC) to reduced instruction 
sets (RISC), the inclusion of caches (2) as well as floating point 
hardware on-chip, and, most recently, the incorporation of features, 
such as pipelining (3) that previously were only used in mainframes 
and supercomputers. These features would not be possible without 
an increase in chip density: the number of transistors on a micro- 
processor chip has increased at about 40% per year, and this trend 
shows no sign of abating. 

An important feature of these architectural improvements is that, 
like circuit speed improvements, they are largely transparent to 
users, who do not have to change their way of working to derive 
performance benefits. Continuing this remarkable trend has present- 
ed a challenge to processor designers, and their response has 
spawned important new technologies, chief among them instruc- 
tion-level pardelism (ILP). ILP has as its objective the execution in 
pardel of the lowest level machine operations, such as memory 
loads and stores, integer additions and floating point multiplica- 
tions. These are the normal RISC-style operations that are executed 
when a program runs, but by using ILP multiple operations are 
executed in parallel, even though the system is handed a single 
program written with a sequential processor in mind. 
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Traditional parallel processing derives its speed improvements in 
a fundamentally different way from ILP. When parallel processing is 
used, large sections of code are run in on independent 
processors. There is hardly a development more exciting than 
parallel processing: it has the potential to change fundamentally 
what can be done with a computer. Some problems that would be 
unthinkable on an ordinary computer can be solved using massively 
parallel processing. But, for algorithmic reasons, many applications 
probably never will be subject to speed improvement through 
parallel processing. And when it is possible, major investments are 
often required-usually algorithms and code must be thoroughly 
rethought and reworked to be effective. There are billions of dollars 
worth of "dusty deck" uniprocessor-oriented software, ranging from 
engineering and scientific simulations to commercial processing, 
running on the uniprocessors that constitute virtually all of the 
computers in use today. These programs will not soon be running 
on parallel processors; those that ultimately do are likely to be 
running on systems in which each parallel node is itself an ILP 
processor. Thus traditional parallel processing and instruction-level 
parallel processing complement each other--only infrequently are 
they viewed as alternatives in seeking the same end. 

T h e  challenge of ILP.  The use of ILP promises to continue the 
remarkable 20-year record of microprocessor performance improve- 
ment that has sustained the computer industry and made possible 
the birth of new scientific disciplines such as cornputational physics, 
cornputational chemistry and computational cosmology. While the 
potential of ILP is exciting, many important questions face the 
designer of an ILP system. In this article, with the help of a 
hypothetical ILP processor running a sample program, we will 
examine these issues and will describe increasingly sophisticated 
strategies for exposing and utilizing insuuction-level parallelism. 

Parallel Instruction Execution 
ILP hardware. Consider a model of hardware consisting of four 

functional units and a branch unit connected to a common register 
file (Fig. 1A). We will use this model in all three of the hypothetical 
processors that we will discuss below. This processor is capable of 
starting two integer operations, two memory operations, and a 
branch or compare operation every cycle (though on a real machine 
one might also expect functional units for floating point and address 
computation). In addition to the input operands that one would 
normally expect for an operation, each operation has an additional 
single-bit input called the predicate. If the predicate input is true, the 
operation executes normally. If false, the operation does nothing 
and the result register is not updated. 

All of these operations get their input operands, including the 
predicate, from registers. With this hardware, the fact that five 
predicated operations can be started every cycle implies that up to 
fifteen operands need to be read from the register file and up to five 
results need to be stored into the register file every cycle. A register 
file of this kind, which is capable of supporting multiple reads and 
writes each cycle, is referred to as a multiported register file. (A real 
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machine with this many functional units would be likely instead to 
have several multiported register banks.) 

Certain operations, such as integer addition and subtraction, 
complete in a single cycle (Fig. 1B). Other operations, such as 
integer multiplication and memory loads, take multiple cycles to 
complete. Nevertheless, much as in a manufacturing assembly line, 
this processor can start a new operation on each functional unit 
before the previous ones have completed, employing a technique 
called pipelining. With pipelining it is possible to have multiple 
operations, in various stages of completion, simultaneously execut- 
ing on a single functional unit. In fact, if a program were causing the 
longest latency operation to be issued on every unit in each cycle, 
this machine would be capable of starting five operations per cycle 
and of having 11operations "in flight" at all times. 

There is thus a fair amount of parallelism available even in this 

MULTI-PORTED REGISTER FILE 

A 

c?E&!2Q Functional Unit U s 4  Execution Latencv 

IntegerAdd Integer Unit 1 

Integer Multiply Integer Unit 3 

Load Memory Port 2 

Store Memory Port 1 

Compare Branch Unit 1 

Compare and Branch Branch Unit 1 

Branch Unconditional Branch Unit 1 


B 


Fig. 1. E~ecution hardware of a sample processor for executing programs 
with instruction-level parallelism. (A) Datapaths of the processor. Only those 
functional units necessary for the program example are shown. These include 
two identical integer units and two identical memory ports. INTl  and INT2 
perform integer addition, subtraction and multiplication. MEMl and 
MEM2 represent the hardware that prepares and presents load and store 
operations to the dual-ported data cache. BRANCH performs conditional 
and unconditional branches. It is able to read a pair of registers, compare 
them and branch on the Boolean result. It is also able to store the boolean 
result of a comparison into the register file for use as a predicate. Every 
operation has a third input, a boolean value, shown as the thin arrow into 
each functional unit. If this boolean value is true, the operation executes 
normally. If not, it is not executed at all. (B) Latencies of the various 
operations. Only those operations necessary for the program example are 
listed. Integer addition, memory stores and branches complete in a single 
cycle. Integer multiplication and memory loads take three and two cycles, 
respectively, to complete, but they are pipelined; a new operation can be 
started every cycle on a functional unit even if the previous ones have not yet 
completed. INTl  and INT2, both of which perform operations having 
unequal latencies, have the restriction that two operations on the same 
fknctional unit may not finish at the same time since there is only a single 
result bus per functional unit to communicate the result back to the register 
file. MEMl and MEM2 are not subject to this restriction since store 
operations do not return a value to the register file. 

simple processor. The challenge is to make good use of it. The first 
question that comes to mind is whether enough ILP exists in 
programs to make this possible. Then, if this is so, what must the 
compiler and hardware do to successfully exploit it? 

A sample program fragment. We shall use a simple program 
fragment to illustrate how ILP can be found, enhanced and exploit- 
ed (Fig. 2A). A basic block is the largest contiguous set of 
statements with no branches into or out of the middle of that 
set. The program fragment includes two loops. The inner loop is 
the one around basic block D. The outer loop is around the 
entire code fragment. On each iteration of the outer loop, the 
program may either execute the inner loop or it may execute basic 
block B. This behavior is shown pictorially in a control flow graph 
(Fig. 2B). 

Many techniques for optimizing and parallelizing programs are 
dependent upon knowing which portions of the code are executed 
more frequently than others. A useful statistic is the frequency of 
transitioning between each pair of basic blocks, from which one can 
also calculate the execution frequency for each basic block. In 
practice, these statistics are gathered by a profiling tool while the 
program runs and are saved for later use. 

A serial execution of a program is one in which each statement is 
completed before the next one is begun. The time a program takes 
to execute serially can be calculated by adding the latencies of all 
operations in a basic block, multiplying that by the number of times 
the block is executed, and summing over all blocks. Serial execution 
of our example results in 18,320 operations being executed in 
29,680 cycles for an average execution rate of 0.62 operations per 
cycle (Fig. 3, A and B). 

Basic block ILP. A program can run faster if we use the instruc- 
tion-level parallelism that exists between instructions within a basic 

B a s i c  

O p e r a t i o n  B l o c k  

L a h d L a h d s t a t e m e n t  

A 1  A:  T 1  - LOAD X ( 1 - 1 )  
A2 T2 - LOAD X ( 1 )  
A3 T 3  = 2 * T 1  
A4 T4 = T 3  - T2 
A5 I F  T4 5 0 GOT0 B 

C1 C :  U - 0  
C2 J = l  

D l  D: T 6  = LOAD X ( 1 - J )  
D2 T4 = T4 + 5 
D 3  T7 = T4 * T 6  
D4 U = U + T 7  
D5 J = J + 1  
D6 I F  J 5 1 0  GOT0 D 

E l  E :  GOT0 F 

B 1  B :  T 5 = T 2 - T 1  

B2 U = 2 * T 5  


F 1  F :  T 8 = 3 * V  

F 2  V = T 8 + U  

F 3  1 = 1 + 1  

F 4  I F  I S 2 5  GOT0 A 


G: 

A B 

Flg. 2. (A) A fragment of a sample program. Each statement corresponds to 
a single operation on the example processor (Fig. 1). (Address computation 
is ignored for simplicity.) The first column is the label for the corresponding 
statement in the third column. The second column lists the labels for the 
basic blocks. ALI statements starting with the one on the same line as a basic 
block label up to the statement just prior to the next label are in the same 
basic block. (B) The control flow graph for the sample code. Each block 
corresponds to a single basic block. The arcs indicate the order in which flow 
of control can move from one basic block to another. The existence of two 
arcs out of a block is the result of having a conditional branch in that basic 
block. The number on an arc indicates the frequency of that arc, that is, the 
number of times that that arc was found to have been traversed during an 
execution of the program. The frequency of a certain basic block is the sum 
of the frequencies of all incoming (or outgoing) arcs. 
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block. Instead of starting an instruction only after the previous 
instruction has finished. one could start it as soon as the instructions 
that generate its input operands have finished and sufficient re- 
sources, such as functional units and registers, exist to execute it. 
This execution strategy yields a record of execution for most basic 
blocks that is slightly more parallel than before. For instance, block 
D executes in six cycles instead of in seven cycles (Fig. 4). This 
strategy results in a slight reduction in the execution times for basic 
blocks A, C, D and F, dropping the total execution to 21,960 cycles 
for an average of 0.83 operations per cycle (Fig. 3C) and with as 
many as three operations being issued at one time. 

Parallelism within each basic block is limited bv the data de~en-  
dences between instructions, which results in serial execution. This 
is compounded by the execution latency of operations, whlch 
lengthens the time to execute the serial chain of instructions. For 
instance, in basic block D, statement D 3  uses T6 which is the result 
of D l .  So, D3 is dependent on D l .  Likewise, D 4  is dependent on 
D3 through its use of T7. On  the other hand, D5 is not dependent 
on D l ,  D2, D3 or D4; independences like this can lead to a small 

Basic Numberof Frequency Operations Basic Execution Frequency Weighted 
Block Operations Executed Block T i  T i  

A 5 1000 5000 A 9 1000 9000 
C 2 120 240 C 2 120 240 
D 6 1200 7200 D 9 1200 10800 
E 1 120 120 E 1 120 120 
B 2 880 1760 B 4 880 3520 
F 4 1000 4000 F 6 1000 6000 
Total 18320 	 Total 29680 

Average Operations Per Cycle 0.62 

A 	 B 
Basic Execution Frequency Weighted 	 Basic Execution Frequency Weighted
Block T i  T i  	Block T i  T i  

A 7 1000 7000 A 7 1000 7000 
C 1 120 120 C 5 120 600 
D 6 1200 7200 D 2 960 1920 
E 1 120 120 E 4 120 480 
B 4 880 3520 B 4 880 3520 
F 4 1000 4000 F 4 1000 4000 
Total 21960 Total 17520 
Average Operations Per Cycle 0.83 Average Operations Per Cycle 1.05 

C 	 D 

Basic Execution Frequency Weighted Basic Execution Frequency Weighted 
Block T i  T i  Block T i  T i  

1A 8 500 3500 H 8 1 8 
1C 5 6 0 3 0 0 C 5 120 600 
ID 2 480 960 D 2 960 1920 
1E 4 60 240 E 4 120 480 
1F 1 500 500 ABF 4 998 3992 
2A 1 500 500 G 8 1 8 
2C 5 300 
2D 2 Total 7008 
2E 4 Average Operations Per Cycle 2.614g
2F 1 500 1500 

Total 8500 

Average Operations Per Cycle 2.16 


E 	 F 

Fig. 3. (A) The number of operations executed in the serial execution of the 
program. (B-F) Execution time (per basic block and total) for various 
schemes that are discussed over the course of this article. The time to execute 
the sample code can be calculated by first computing, for each basic block, 
the execution time for a single visit to that basic block, next, weighting the 
execution time for each basic block by its execution frequency and, finally, 
adding up the weighted execution times. In the case of serial execution, the 
execution time for each basic block is computed by adding up the products 
of the number of times each operation is executed per visit to that block and 
the latency of that operation: (B) serial execution, (C) execution exploiting 
only the ILP within individual basic blocks, (D) execution exploiting only 
the ILP within individual basic blocks except for loop D which is software 
pipelined, (E) outer loop unrolled once, basic blocks lA, lB, lF,  2A, 2B, 2F 
trace scheduled, and both copies of loop D software pipelined, (F) outer 
loop trace through A, B, F software pipelined and loop D software pipelined. 
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I 	 I 
Fig. 4. Record of execution for basic block D when exploiting the ILP 
within that block. 

amount of parallelism within a single basic block. The dependences 
between operations are often represented as a graph (Fig. 5) with 
the nodes representing the statements and the arcs representing the 
dependences between statements. The longest path through a 
dependence graph is called the critical path. Consider the depen- 
dence graph for basic block D. T k n g  into account the latencies of 
the operations, the critical path for D, through D l ,  D3 and D4 
(which are thus called critical path operations), is six cycles long. Six 
cycles is thus the shortest time in which basic block D can be 
executed. 

Global ILP. Exploiting the parallelism within individual basic 
blocks led only to a 30% speedup (Fig. 3C); we could expect more 
if the computations in separate basic blocks could also be executed 
in parallel with one another. The problem is that basic blocks are 
separated by branches, most often conditional branches. Frequently, 
the branch condition can only be calculated at the end of the basic 
block and only then is it possible to determine the identity of the 
basic block that is to be executed next. This would appear to 
frustrate any attempts to execute basic blocks in parallel. 

One approach is to recognize that although we may not yet know 
whether the next basic block is to be executed. we could be certain 
that a subsequent one must be. In our example, while executing 
basic block A, even though branch A5 may not have been executed, 
it is certain that basic block F must be executed since all paths from 
A lead to it. In addition, we could test the branch condition in F4 
immediately to determine whether another iteration is to be exe- 
cuted. If this turns out to be the case, we now know that basic blocks 
A and F from the next iteration. too. must definitelv be executed. , , 

This already allows us to execute the operations from four basic 
blocks in  parallel (assuming that they are not dependent on one 
another) without yet knowing which way the branch A5 in the first 
iteration is going. This type of parallelism is termed control paral- 
lelism. 

At times, we might find that there is inadequate control parallel- 
ism to fully utilize the functional units. The second approach for 
finding more parallelism, termed speculative execution, relies on the 
fact that there is little to be lost in using otherwise idle resources to 
execute operations whose results we might, possibly, end up using. 
Although we may not yet be positive that the program will actually 
flow to certain subsequent blocks, we can still choose to specula- 
tively execute operatidns from those blocks in parallel. operations 
executed speculatively must be capable of being ignored if the flow 
does not later mandate their execution (and in real machines one 
must solve the difficult problem of treating error conditions raised 
by speculative operations). Thus, for example, stores to memory are 
rarely candidates for speculative execution. 

without knowing which way any branch actually does go, the 
transition frequencies for our example (Fig. 2B) show that the path 
from basic block A to B to F and back to A will be repeatedly 
executed multiple times. Thus a reasonable strategy is to use eve& 
cycle that would otherwise be wasted to execute instructions spec- 
ulatively down this expected path. If we execute operations on this 
path as soon as their input operands are available, the resulting 
record of execution displays considerable parallelism. When this is 
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Fig. 5. (A) The code for basic block D. Parallelism within a basic block is 
limited by the data dependences between instructions and by the execution 
latency of operations. For instance, operation D3 uses T6 which is the result 
of Dl.  So, D3 is dependent on D l  and cannot begin until D l  has finished. 
Likewise, D4 is dependent on D3 through its use of T7. On the other hand, 
D5 is not dependent on Dl,  D2, D3 or D4. Such independence leads to a 
small amount of parallelism within individual basic blocks. (B) The depen-
dence graph for basic block D. The ILP within the basic block is represented 
by a graph with the nodes representing the operations and the arcs 
representing the dependences between operations. The input to Dl,  labeled 
''@X(I- J)," is the address of the array element X(1-J). 

B a s i c  
O p e r a t i o n  B l o c k  
Lab& statement 

D l  D: T 6  = LOAD X ( 1 - J )  
D2 T 4  = T 4  +5 
D 3  T 7  = T 4  * T 6  
D 4  U = U + T 7  
D 5  J =  J + 1  
D 6  I F  J L 1 0  GOT0 D 

A 

compared to the records of execution for the individual basic blocks 
A, B, and F with no speculative execution, the improvement (assum-
ing that branches always go in the expected direction) is almost a 
factor of 4. In this case three or four operations are consistently 
started per cycle. This is by no means an atypical situation. 

For the past 20 years, researchershave been gathering experirnen-
tal data on the amount of available instruction-level parallelism for 
various workloads and under a variety of assumptions (4-7). Al-
though the results have varied with the experimental conditions, a 
consistent pattern has emerged: potential ILP, when limited to basic 
blocks, offers speedups of between a factor of 2 and 3.5. When 
techniques that move operations from block to block are used, the 
potential jumps to a factor of between 5 and 20, with even more 
speedup available in various applications such as array-oriented 
programs. By using estimated probabilities of branch direction, a 
system can selectively execute those operations which are most likely 
to be profitable. Experiments (8, 9) and experience have indicated 
that branch directions are sufficientlypredictable to make speculative 
execution practical. 

U T4 5 QX(1-J) J 1 

T7 

u 
B 

ILP Architectures 
So far we have only demonstrated the end result of instruction-

level parallelism, the record of execution, without having said much 
about how this is effected. How exactly are the necessary decisions 
made as to when an operation should be executed and whether an 
operation should be speculativelyexecuted? The alternatives can be 
broken down depending on the extent to which these decisions are 
made by the compiler rather than by the hardware and on the 
manner in which information regarding pardelism is communicat-
ed by the compiler to the hardware via the program. 

A computer architecture is a contract between the class of 
programs that are written for the architecture and the set of 
processor implementations of that architecture. Usually this contract 
is concerned with the instruction format and the interpretation of 
the bits that constitute an instruction, but in the case of ILP 
architectures it extends to information embedded in the program 
pertaining to the available parallelism. With this in mind, ILP 
architectures can be classified as follows: 

Sequential architectures: Architectures for which the program is 
not expected to convey any explicit information regarding parallel-

ism. Superscalar processors (10-14) are representative of ILP pro-
cessor implementations for sequential architectures. 

Dependence architectures: Architectures for which the program 
explicitly indicates the dependences that exist between operations. 
Dataflow processors (15-17) are representative of this class. 

Independence architectures: Architectures for which the program 
provides information as to which operations are independent of one 
another. Very Long Instruction Word (18-21) processors are an 
example of the class of independence architectures. 

These architectural alternatives are elaborated upon below and the 
three types of processors are discussed in the next section (22). 

Sequential architectures. Since the compiler neither identifies paral-
lelism nor makes scheduling decisions, the program contains no 
explicit information regarding the dependences between the instruc-
tions. If instruction-level parallelism is to be employed, the depen-
dences that exist must be determined by the hardware, which must 
then make the scheduling decisions as well. 

Dependence architectures. The compiler, or the writer of a program, 
identifies the parallelism in the program and communicates it to the 
hardware by specifying the dependences between operations. This is 
typicdy done by specifying, for each operation, the list of other 
operations that are dependent upon it. The hardware must make 
scheduling decisions at run-time which are consistent with the 
dependence constraints. 

Independence architectures. The compiler identifies the parallelism in 
the program and communicates it to the hardware by specifying 
which operations are independent of one another. This information 
is of direct value to the hardware, since it knows with no further 
checking which operations it can execute in the same cycle. Unfor-
tunately, for any given operation, the number of independent 
operations is far greater than the number of dependent ones and, so, 
it is impractical to specify all independences. Instead, for each 
operation, independences with only a subset of d independent 
operations (those operations that the compiler thinks are the best 
candidates to execute concurrently) are specified. 

By listing operations that could be executed simultaneously, code 
for an independence architecture may be very close to the record of 
execution produced by an implementation of that architecture. If the 
architecture additionally requires that programs specify where (on 
which functional unit) and when (in which cycle) the operations are 
executed, then the hardware makes no run-time decisions and the 
code is virtually identical to the desired record of execution. The 
Very Long Instruction Word (VLIW) processors that have been 
built to date are of this type and represent the predominant examples 
of machines with independence architectures. A particular processor 
implementation of an independence architecture of this type could 
choose to disregard the scheduling decisions embedded in the 
program, making them at run-time instead. In doing so, the 
processor would still benefit from the independence information but 
would have to perform all of the scheduling tasks of a superscalar 
processor. Furthermore, when attempting to execute concurrently 
two operations that the program did not specify as being indepen-
dent of each other, it must determine independence, just as a 
superscalar processor must. 

ILP Processor Implementations 
Superscalar processors. The goal of a superscalar processor is to 

execute many operations in pardel even though the hardware is 
handed a sequential program. But a sequential program is construct-
ed with the assumption only that it will execute correctly when each 
operation waits for the previous one to finish, and that is the only 
order that the architecture guarantees to be correct. The first task, 
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then, for a superscalar processor is to understand, for each instruc-
tion, which other instructions it actually is dependent upon. With 
every instruction that a superscalar processor issues, it must check 
whether the instruction's operands (registers or memory locations 
that the instruction uses or modifies) interfere with the operands of 
any other instruction that is either: 

Already in execution, or 
Has been issued but is waiting for the completion of interfering 

instructions that would have been executed earlier in a sequential 
execution of the program, or 

Is being issued concurrently but would have been executed 
earlier in a sequential execution of the program. 

If none of these conditions is true, the instruction in question is 
independent of all these other instructions and it can be allowed to 
begin executing immediately. If not, it must be delayed until the 
instructions on which it is dependent have completed execution. In 
the meantime, the processor may begin execution of later instruc-
tions which prove to be independent of the ones that are being 
delayed. In addition, the superscalar processor must decide exactly 
when and on which available functional unit to execute the instruc-
tion. The IBM System/360 Model 91, built in the early 1960s, 
utilized a method called Tomasulo's Algorithm (23) to carry out 
these functions. 

Note that a superscalar processor need not issue multiple opera-
tions per cycle in order to achieve a certain level of performance. For 
instance, in the case of our sample processor (Fig. l ) ,  the same 
performance could be achieved by pipelining the functional units 
and instruction issue hardware five times as deeply, speeding up the 
clock rate by a factor of five but issuing only one instruction per 
cycle. This strategy has been termed superpipelining (24). Super-
pipelining may result in some parts of the processor (such as the 
instruction unit and communications busses) being less expensive 
and better utilized and other parts (such as the execution hardware) 
being more costly and less well used. 

DatafEow processors. The objective of a dataflow processor is to 
execute an instruction at the earliest possible time subject only to the 
availability of the input operands and a functional unit upon which 
to execute the instruction. Unlike a superscalar processor, it counts 
on the program to provide information about the dependences 
between instructions. This is accomplished by including in each 
instruction a list of successor instructions. (An instruction is a 
successorof another instruction if it uses as one of its input operands 
the result of that other instruction.) Each time an instruction 
completes, it creates a copy of its result for each of its successor 
instructions. As soon as all of the input operands of an instruction 
are available, the hardware fetches the instruction, which specifies 
the operation to be performed and the list of successor instructions. 
The instruction is then executed as soon as a functional unit of the 
requisite type is available. This property, whereby the availability of 
the data triggers the fetching and execution of an instruction, is what 
gives rise to the name of this type of processor. Because of this 
property, it is redundant for the instruction to specify its input 
operands. Rather, the input operands specify the instruction! If 
there is always at least one instruction ready to execute on every 
functional unit, the dataflow processor achieves peak performance. 

As we have seen, computation within a basic block typically does 
not provide adequate levels of parallelism. Thus superscalar and 
VLIW processors use control parallelism and speculative execution 
to keep the hardware fully utilized. Dataflow processors have 
traditionally counted on control parallelism alone to fully utilize the 
functional units. A dataflow processor is more successful than the 
others at looking far down the execution path to find abundant 
control parallelism. When successful, this is a better strategy than 
speculative execution because every instruction executed is a useful 

one and the processor does not have to deal with error conditions 
raised by speculative operations. 

Very Long Instruction Word processors. In order to execute opera-
tions in parallel, the system must determine that the operations are 
independent of one another. Superscalar processors and dataflow 
processors represent two ways of deriving this information at 
run-time. In the case of the dataflow processor, the explicitly 
provided dependence information is used to determine when an 
instruction may be executed-so that it is independent of all other 
concurrently executing instructions. The superscalar processor must 
do the same but, because programs for it lack any explicit informa-
tion, it must also first determine the dependences between instruc-
tions. In contrast, the program for a VLIW processor specifies 
exactly which functional unit each operation should be executed on 
and exactly when each operation should be issued so as to be 
independent of all operations that are being issued at the same time 
as well as of those that are in execution. 

With the VLIW processor, it is important to distinguish between 
an instruction and an operation. An operation is a unit of compu-
tation, such as an addition, memory load, or branch, which would 
be referred to as an instruction in the context of a sequential 
architecture. A VLIW instruction is the set of operations that are 
intended to be issued simultaneously. It is the task of the compiler 
to decide which operations should go into each instruction. This 
process is termed scheduling. Conceptually, the compiler schedules 
a program by emulating at compile-time what a dataflow processor, 
with the same execution hardware, would do at run-time. All 
operations that are supposed to begin at the same time are packaged 
into a single VLIW instruction. The order of the operations within 
the instruction specifies the functional unit on which each operation 
is to execute. A VLIW program is a transliteration of a desired 
record of execution which is feasible in the context of the given 
execution hardware. 

The compiler for a VLIW machine specifies that an operation be 
executed speculatively merely by performing speculative code mo-
tion, that is, scheduling an operation before the branch that 
determines that it should, in fact, be executed. At run-time, the 
VLIW processor blindly executes this operation exactly as specified 
by the program just as it would for a non-speculative operation. 
Speculative execution is virtually transparent to the VLIW processor 
and requires little additional hardware. When the compiler decides 
to schedule an operation for speculative execution, it can arrange to 
leave behind enough of the state of the computation to assure 
correct results when the flow of the program requires that the 
operation be ignored. The hardware required for the support of 
speculative code motion consists of having some extra registers, of 
fetching some extra instructions, and of suppressing the generation 
of spurious error conditions. The VLIW compiler must perform 
many of the same functions that a superscalar processor performs at 
run-time to support speculative execution. 

Other types of independence architecture processors have been 
built or proposed. The superpipelined machine, described above, 
issues only one operation per cycle. But if there is no superscalar 
hardware devoted to preserving the correct execution order of 
operations, the compiler will have to schedule them with full 
knowledge of dependencies and latencies. From the compiler's point 
of view, these machines are virtually the same as VLIWs, though the 
hardware design of such a processor offers some tradeoffs with 
respect to VLIWs. Another proposed independence architecture, 
dubbed Horizon (25), encodes an integer H into each operation. 
The architecture guarantees that all of the past H operations in the 
instruction stream are independent of the current operation. All the 
hardware has to do to release an operation, then, is assure itself that 
no operation older than the Hth previous operation is in flight or 
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pending. The hardware does all of its own scheduling, unlike 
VLIWs and deeply pipelined machines which rely on the compiler, 
but the hardware is relieved of the task of determining data 
dependence. 

ILP Compiler Techniques 
Regardless of whether an ILP processor makes the final schedul- 

ing decisions at run-time or compile-time, a compiler must generate 
code in which operations are rearranged for better performance. In 
the case of VLIW processors, the operations are arranged precisely 
in their execution order. In the case of superscalar processors, the 
hardware can only consider some number of nearby operations 
(called the instruction window) at one time. Compilers make use of 
their understanding of the processor's hardware scheduling algo- 
rithms to produce a rearranged program loosely tailored for that 
hardware, giving the processor the greatest possible opportunity to 
find parallelism. 

Various compiler techniques have been developed to schedule 
operations exactly or approximately. The simplest of these address a 
single basic block, and are often referred to as local scheduling. For 
example, a compiler might schedule each operation by means of a 
procedure similar to the following: 

1) Use heuristics to pick one of the unscheduled operations 
whose predecessors have already been scheduled. Simple heuristics 
usudy suffice. 

2) Calculate the completion time for each of its predecessor 
operations by adding their execution latency to the time at which 
they are scheduled to begin execution. Take the largest of these 
completion times. This is the earliest time at which the operation can 
be scheduled to begin execution. 

3) Determine the earliest time thereafter when an appropriate 
functional unit is available to perform the operation, that is, no 
previously scheduled operation has been assigned to that fimctional 
unit at the same time. Schedule the operation at this time on this 
functional unit. 

4) If there are any remaining unscheduled nodes, repeat the 
procedure from step 1. 

This procedure could be employed, for example, to the compu- 
tation in basic block D, yielding a schedule for a VLIW (Fig. 4). 
Note the similarity between the above procedure and the sequence 
of steps by which the dataflow processor would execute the same 
computation. 

Global scheduling techniques. We have seen that most of the 
available parallelism is found beyond the boundaries of basic blocks. 
Until a decade ago, compiler techniques which scheduled ILP code 
by moving it from block to block (cded global scheduling) were 
virtually nonexistent. But now two related sets of technologies have 
matured to the level that they are used in commercial environments. 
The first of these, which we may group under the heading software 
pipelining, schedules a loop so that successive iterations of the loop 
will execute concurrently while producing code that is as compact as 
possible. The second set of techniques, which we may call trace 
directed scheduling, deal with scheduling computations with a more 
general flow of control, either where the loop structure is not 
relevant, or within a (possibly software pipelined) loop body with a 
complex flow of control. 

Loop parallelism and sofware pipelining. We begin by considering 
the loop around the basic block D, which is the most frequently 
executed basic block in the program. A record of execution of loop 
D would be ideal if it executes all operations as soon as their inputs 
and an appropriate functional unit are available. This is what a 
dataflow processor would do. If we knew the exact trip count, that 

is, the number of iterations of the loop actually executed, we could 
achieve the same result as the dataflow processor by unrolling the 
loop completely, treating the resulting code as a single basic block 
and generating the best possible schedule. Unfortunately, we do not 
generally know the trip count at compile-time and, even if we did, 
the unrolled code would usudy be too large for this to be a practical 
strategy. Our goal, therefore, is to approach the performance of this 
impractical approach in a practical way. To achieve this, imagine the 
following conceptual strategy. First, we unroll the loop completely. 
Then we schedule the code, but with two constraints: (i) d 
iterations have identical schedules except that (ii) each iteration is 
scheduled some fixed number of cycles later than the previous 
iteration. 

This fixed delay between the start of successive iterations is termed 
the initiation interval. This unrolled code, after scheduling, is 
repetitive except for a small portion at the beginning and, likewise, 
a small portion at the end. This repetitive portion can be re-rolled to 
yield a new loop which is known as the kernel. The prologue is the 
code corresponding to the record of execution that precedes the 
repetitive part and the epilogue is the code corresponding to the 
record of execution following the repetitive part. By executing the 
prologue, followed by the kernel an appropriate number of times, 
and finally the epilogue, one would come close to re-creating the 
ideal record of execution of the unrolled code. Thus, a relatively 
small amount of code is able to approximate the ideal (but imprac- 
tical) strategy of unrolling the loop completely. This technique for 
executing loops is known as software pipelining (26-29). 

Software pipelined code (Fig. 6) can be generated using an 
algorithm known as modulo scheduling (26). There are two steps to 
this: first, determining the initiation interval and, second, creating 
the schedule. The objective is to come up with a schedule having the 
smdest possible initiation interval, since this corresponds to the 
maximum performance. The limiting factor in deciding the initia- 
tion interval can either be a critical chain of dependences running 
through the loop iterations or a critical resource that is utilized fully. 
Scheduling itself proceeds much like local scheduling except that in 
step 3, resource conflicts must be avoided not only with operations 
from the same iteration but with operations from previous and 
subsequent iterations as well. This is done by ensuring that, within 
a single iteration, no machine resource is used at two points in time 
that are separated by a time interval that is a multiple of the iteration 
interval. 

Compared to locally scheduled code, whose execution time is 
21,960 cycles (Fig. 3C), the execution time with a software pipe- 
lined loop D drops to 17,520 cycles (Fig. 3D) for a further 26% 
increase in performance over local scheduling, yielding 1.05 opera- 
tions per cycle. 

Trace scheduling. Intuitively, one might approach the problem of 
scheduling operations globally as follows: first, schedule each basic 
block; second, move operations about from block to block to 
improve the schedule. Unfortunately, this will cause too many 
decisions, such as which registers and functional units to use for each 
operation, to be made with a local perspective, causing many false 
conflicts from a global viewpoint and greatly limiting the quality of 
the schedule. Instead, trace scheduling (30, 31) works as follows: 

1) The scheduler selects a trace, that is, a linear sequence of basic 
blocks. Frequency profiles (Fig. 2B) are used to prune this selection 
to the most frequently executed code not yet scheduled. With the 
use of loop unrolling and other techniques, large bodies of code can 
be considered simultaneously (Fig. 7). (In practice, critical sections 
of code might be unrolled a lot, though the compiler must be 
mindful of how much code space is being used in doing so.) 

2) The entire trace is considered at once. The compiler treats the 
trace as if it were a single basic block and schedules it in a manner 
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Fig. 6. VLlW software pipelined code for loop D. For this loop, the integer 
units are the critical resources. Since there are three integer operations per 
iteration and only two integer units, the maximum sustained rate at which 
new iterations can be started is one iteration every two cycles. Taken 
together, the prologue, kernel and epilogue correspond to three copies of the 
original block D. The operations from these three copies are labeled with the 
prefix 1, 2 or 3. The new basic block D (after modulo scheduling with an 
initiation interval of 2)  consists of only the kernel of the software pipelined 
loop. The prologue has been merged in with basic block C,  and the epilogue 
with basic block E. Since 1D1in the prologue is dependent on C2, C2 must 
be scheduled one cycle earlier than the start of the prologue. On the other 
hand, C1 can be scheduled as late as the last instruction in the prologue since 
it is the predecessor of 1D4. E l ,  the jump back to basic block F, must be 
scheduled in the last instruction of E, that is, at the end of the epilogue. 
Good superscalar code would result from a linear ordering of the VLIW code 
obtained by a left-to-right, top-to-bottom scan of the VLIW code. 

similar to the local scheduling described above. In general, the 
compiler will generate synthetic data-precedence edges to prevent 
the speculative execution of operations that would be illegal because 
they would have permanent effects. During this process, branches 
are given no special consideration. With the help of profile infor-
mation, the compiler can choose to schedule operations early, to 
delay operations, or to do whatever seems desirable given the 
resources at hand. Register allocation, functional unit selection, and 
so on, are done only as an operation is being scheduled, preventing 
arbitrary choices from unnecessarily constraining the schedule. 

3) After scheduling the trace, the compiler must under some 
circumstances duplicate operations that have been scheduled. This 
occurs for two reasons: first, some operations will have been 
scheduled after a conditional jump that they used to precede. In that 
case, the operation in question must be duplicated so that it appears 
in the off-trace target of the branch. Second, when there are rejoins, 
the rejoin must jump to a place after which only operations that were 
below the original rejoin may be found. The highest such place in 
the schedule formed by the compiler may be below the scheduled 
location of some of the operations that originally were after the 
rejoin. These operations must then be copied to the end of the 
off-trace block that is jumping to the new rejoin location. In 
practice, this extra code has been relatively small, but avoiding the 
generation of too much code when the flow of control is very 
complex can be a concern when scheduling for VLIWs and super-
scalar processors. 

The result of this process is trace scheduled code (Fig. 8). With 
trace scheduling (and the previously applied software pipelining), 
our example executes in 8500 cycles, yielding 2.16 operations per 
cycle (Fig. 3E). This translates to a factor of 2.6 improvement over 
local ILP, and a 3.5 factor improvement over serial execution. In the 
procedure outlined above, we restricted ourselves to selecting a set 
of basic blocks that constitute a linear path through the code. In 
many cases, it might be desirable to select a set of blocks that 
represent a more general flow of control. Extensions of the above 
scheduling procedure can handle this more general case (32, 33). 

Predicated execution. As we saw earlier, in certain cases there exists 
an alternative to this speculative approach to exploiting inter-block 

parallelism. This arises when there are distinct computations or 
portions of the program that can be executed in parallel without 
having to specdate: A dataflow processor (with multiple loci of 
control) is well suited to exploiting such pardelism; each locus of 
control executes a separate portion of the computation. Since each 
locus of control is independently and concurrently executing 
branches, the number of ways in which the overall computation can 
evolve is combinatorial in nature. This poses a problem for a VLIW 
or superscalar processor that is trying to emulate the record of 
execution of the dataflow machine, handicapped as it is by having 
only a single locus of control; a distinct code sequence must exist for 
each possible record of execution that can result on the dataflow 
machine, often leading to an intolerable amount of code. 

Predicated execution is a mechanism that d o w s  a uniprocessor to 
more efficiently emulate the dataflow processor. To begin with, all 
branches are eliminated in each of the code regions of interest and 
each operation is provided, as its predicate input, with a boolean 
value that is true if and only if flow of control would have passed 
through this operation in the original code. This process is termed 
IF-conversion. Given that all branches have been eliminated in the 
regions of interest, these regions can be scheduled to execute in 
parallel with no combinatorial problems of code size. During 
execution, the selective suppression of operations by the predicates 
yields the various combinations of execution records that would 
have been generated by a multiple locus machine. However, there 
are two drawbacks to this approach: first, the selective suppression 
of the predicated operations results in wasted execution cycles. 
Depending on the nature of the computation, the number of such 
wasted cycles may either be greater than or less than the number 
wasted during speculative execution. Second, the different paths 
through the original code may have different lengths. The IF-
converted code must take as long as the longest path even when a 
shorter path is to be executed and, if this computation is on the 

B a s i c  
O p e r a t i o n  B l o c k  
L a h e l S t a t e m e n t  

1A: T I  = LOAD X(1-1 )  
T2  = LOAD X ( I )  
T 3  = 2 * T 1  
T4 = T 3  - T2 
IF T4 > 0 GOT0 1 C  

1B: T 5  = T2 - T I  
U1 = 2 * T 5  

I F :  T8  = 3 * V 
V = T8 + U1 
I = 1 + 1  
I F  I > 1 0 0 0  GOT0 EXIT 

2A: T I 1  = LOAD X ( I - 1 )  
T I 2  = LOAD X ( 1 )  
T 1 3  = 2 * T I 1  
T I 4  = T 1 3  - T I 2  
I F  T I 4  > 0 GOT0 2C 

2B: T I 5  = T I 2  - T I 1  
U2 = 2 * T 1 5  

2 F :  T 1 8  = 3 V 
V = T I 8  + U2 
I = I t 1  
I F  I < 1 0 0 0  GOT0 1A 

G: 

Fig. 7. Code for the unrolled trace. The body of the outer loop now contains 
two copies each of every basic block in the original loop body. The labels of 
the two copies of a basic block are distinguished by a prefix of either 1 or 2. 
Likewise, the labels of the two copies of each operation are distinguished by 
a similar prefix. The temporary variables that hold the results of the second 
set of operations have been renamed in a systematic fashion. For instance, 
the temporary variable T1 has been renamed T l l  in basic block 2A. Since 
the expectation is that the trace will tend not to be exited, the sense of 
branches lA5 ,  1F4 and 2A5 has been reversed. The trace includes only the 
basic blocks l A ,  l B ,  lF ,  2A, 2B and 2F. Not shown are two copies, 1D and 
2D, of the software pipelined inner loop as well as basic blocks lC,  l E ,  2C 
and 2E. 



Fig. 8. Scheduled code (which is also the record of execution) for the 
unrolled trace in Fig. 7. The operations in the trace are scheduled as if the 
trace is a single basic block, even though it actually consists of six basic 
blocks. This results in operations freely moving above or below branches 
determined only by what yields a good schedule. The relative ordering of 
branches is not altered. After scheduling, the demarcation between blocks 
can be re-established to determine which operations have moved from one 
basic block to another. Each branch dehes  the end of its basic block. Thus 
1Aends at time 8 since 1A5 is scheduled that time. Likewise, lF,  2A and 2F 
end at times 9, 10, and 11, respectively. The boundary between basic blocks 
1B and 1F and between 2B and 2F are defined by the points at which the 
branches from 1E and 2E, respectively, enter the trace. The rule used here is 
that the rejoin after trace scheduling should be at the earliest point that does 
not include operations that were originally above the rejoin. The earliest 
instruction, that does not include any operations that originally were from 
1A or 1B, is instruction 9. Since instruction 8 is part of 1A and instruction 
9 is in lF, this means that 1B is now an empty block. Likewise, 2B is an 
empty block. Once the basic blocks have been demarcated, it is clear what 
code motion has been effected. For instance, 2F1 has been speculatively 
moved up by five blocks, past three conditional branches and two rejoins, 

critical path, performance is degraded. 
Predicated execution is often beneficial when executing loops 

which have branches in the body of the loop. The trace A-B-F 
through the outer loop of the sample code is such an example 
because it contains the branch A5. The successive iterations of the 
trace are the computations that should be executed in parallel. After 
IF-conversion, the operations in the trace can be software pipelined 
in much the same way that loop D was. This results in an overall 
execution time of 7008 cycles, yielding an average of 2.61 opera-
tions per cycle (Fig. 3F). This constitutes more than a fourfold 
speedup over the serial execution of the program. The software 
pipelining of a trace through the outer loop also illustrates the point 
that trace scheduling and software pipelining can be applied either 
singly, as alternatives to one another, or in conjunction with one 
another. 

Future Work 
In the past 3 years, ILP has gone from being a 30-year-old field of 

research with ahandfid of produced each year, to being one 
of the two or three dominant areas in the field of computer 
architecture. However, ILP is an extremely controversial field of 
computer science. Most researchers agree on the desirability and 
practicality of ILP and sophisticated compiling, but the consensus 
stops there. All three types of implementations discussed above have 
their advocates, as do various blends of those technologies. A better 
understanding of the relative merits of the alternatives is central to 
the future design and use of ILP systems. Much of the research in 
progress involves the quantitative evaluation of the alternatives 
presented above, and much work remains in the invention and 
prototyping of new techniques to exploit ILP. 

Available parallelism. One area of investigation involves measuring 
how much parallelism is available in programs. Many of the 
disagreements explored above may boil down to this issue. Unfor- 
tunately, there is little agreement about what workloads are impor- 
tant. Often, depending upon their backgrounds, researchers have 
very different views on this matter. This contributes to the differ- 
ences of opinion since the amount of ILP available varies dramati- 
cally with the choice of programs being measured. If relatively little 
ILP is available, perhaps a factor of 2 or 3, then the arguments in 
favor of superscalar architectures may become overwhelming. If 
instead the typical available improvement factor is in the 5 to 20 
range, then the objections to VLrWs may be small compared to the 
difficulty of building a superscalar to exploit that much ILP; many 
researchers believe that such a superscaler would be completely 

into 1A. In general, if an operation is moved up past a rejoin, it must be 
copied into the off-trace code just prior to the rejoin. The rejoin at the top 
of 1F comes after 1F2 which must, therefore, be copied to the end of 1E. 
Likewise, code that has moved down past a conditional branch must be 
copied into the off-trace code immediately following the exit. Once again, 
good superscalar code would result from a linear ordering of the VLIW code 
obtained by a left-to-right, top-to-bottom scan of the VLIW code. 

impractical. Finally, if massive quantities of ILP are typically avail- 
able, dataflow may turn out to be the only architecture that can 
exploit it. In the authors' opinion, most of the debates about ILP 
will remain hollow until the type and amount of parallelism available 
in programs is classified and quantified. 

Object-code compatibility. Processors that can each run the same 
object code, unchanged, are said to be object-code compatible. This 
is desirable, since it permits the replacement of an old processor with 
a new one without recompilation. Superscalar processors are more 
flexible than VLIW processors when new hardware technologies 
mandate changed latencies, since they schedule operations after, 
rather than before, the object code is produced. Important unan- 
swered questions relate to this issue: are superscalar processors as 
flexible as they seem, or is recompilation required for them as well if 
they are to perform well when latencies change? Instead of distrib- 
uting machine-level object-code, can the paradigm of software 
distribution change to one with a greater emphasis on a language 
level representation that is between the machine language and 
source language levels? 

~rchitec&raivariations.Another important area of research is the 
design of hybrid architectures and processors which distill the good 
properties of each of the above classifications while overcoming their 
shortcomings. The Horizon processor is a good example of such a 
compromise. Other important questions remain in the design of 
processors, such as whether to issue multiple operations per cycle or 
whether to design machines which are superpipelined. 

Speculative execution. ILP is an area that has had a relatively 
real-world orientation. There have been several commercial imple- 
mentations of ILP processors which have been quite novel and 
ambitious, but which have, nevertheless, only scratched the surface 
of what is possible. Much engineering and research remains out- 
standing in the areas of register allocation, handling general flow of 
control, the use of predicates, and so forth. Studies have suggested 
that the bulk of ILP is accessible only when one is willing to do large 
amounts of speculative execution. Yet only a few systems have 
begun to wrestle with the practical implications of speculatively 
triggering error conditions, which might or might not be spurious. 
Also, none of the systems built to date have seriously tried to extend 
ILP to nonscientific codes, where the memory disambiguation 
problem becomes much more difficult. 

T h e  merits of dataflow processors. Dataflow architectures have held 
great promise for over two decades. The dataflow model of compu- 
tation is also an important unifying concept in ILP: it serves as an 
idealized framework and reference standard for ILP. But the com- 
mercial viability of dataflow architectures has remained a controver- 
sial question. The dataflow debate revolves around its potential for 
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massive levels of ILP with excellent object code compatibility, its 
shortcomings in supporting existing programs written in conven- 
tional languages or programs with little parallelism, and the practi- 
cality of its synchronization hardware. 

SoJware pipelining versus loop unrolling. The compiler techniques 
that we have described apply equally to VLIW and superscalar 
implementations. However, there are many open questions in the 
areas of scheduling, register allocation, and code generation. For 
example, we have presented two different approaches to scheduling 
loop codes: software pipelining and the trace scheduling of unrolled 
loops. There are examples of code where one or the other is clearly 
superior, but little is known about where the boundary lies. At other 
times, software pipelining and trace scheduling are cbmplementary 
and work well in concert. Both sets of techniques have been 
implemented in commercial processors (19, 20), but neither irnple- 
mentation was a suitable testbed on which these issues could be 
explored. 

There is little argument about the desirability of allowing software 
to arrange code for more ILP. But whether a large increment over 
what can be done today is desirable, possible, or practical is a 
controversial question. Whether a significant amount-of this work 
can realistically be done in the hardware is an area with more 
opinions than facts. 
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