
Instruction-Level Parallel Processing

JOSEPH A. FISHERAND B. RAMAKRIsHNA RAU

The performance of microprocessors has increased steadi-
ly over the past 20 years at a rate of about 50%per year.
This is the cumulative result of architectural improve-
ments as well as increases in circuit speed. Moreover, this
improvement has been obtained in a transparent fashion,
that is, without requiring programmers to rethink their
algorithms and programs, thereby enabling the tremen-
dous proliferation of computers that we see today. To
continue this performance growth, microprocessor de-
signers have incorporated instruction-level parallelism
(ZLP) into new designs. ILP utilizes the parallel execution
of the lowest level computer operations-adds, multiplies,
loads, and so on-to increase performance transparently.
The use of ILP promises to make possible, within the next
few years, microprocessors whose performance is many
times that of a CRAY-1s. This article provides an over-
view of ILP, with an emphasis on ILP architectures-
superscalar, VLIW, and dataflow processors-and the
compiler techniques necessary to make ILP work well.

MUCH OF THE DRAMATIC INCREASE IN THE PERFOR-

mance of microprocessors over the past 20 years has come
from continuing improvements in processor architecture.

Indeed, while overall performance has grown steadily at the com-
pounded rate of about 50% per year, raw circuit speed has account-
ed for less than half of that annual increase (1).The rest has been due
to such factors as an increase in word size from 8 bits to 32 bits, a
move from complex instruction sets (CISC) to reduced instruction
sets (RISC), the inclusion of caches (2) as well as floating point
hardware on-chip, and, most recently, the incorporation of features,
such as pipelining (3) that previously were only used in mainframes
and supercomputers. These features would not be possible without
an increase in chip density: the number of transistors on a micro-
processor chip has increased at about 40% per year, and this trend
shows no sign of abating.

An important feature of these architectural improvements is that,
like circuit speed improvements, they are largely transparent to
users, who do not have to change their way of working to derive
performance benefits. Continuing this remarkable trend has present-
ed a challenge to processor designers, and their response has
spawned important new technologies, chief among them instruc-
tion-level pardelism (ILP). ILP has as its objective the execution in
pardel of the lowest level machine operations, such as memory
loads and stores, integer additions and floating point multiplica-
tions. These are the normal RISC-style operations that are executed
when a program runs, but by using ILP multiple operations are
executed in parallel, even though the system is handed a single
program written with a sequential processor in mind.

The authors are with the Hewlett-Packard Laboratories, 1501 Page MiU Road, Palo
Alto, CA 94303.

13 SEPTEMBER 1991

Traditional parallel processing derives its speed improvements in
a fundamentally different way from ILP. When parallel processing is
used, large sections of code are run in on independent
processors. There is hardly a development more exciting than
parallel processing: it has the potential to change fundamentally
what can be done with a computer. Some problems that would be
unthinkable on an ordinary computer can be solved using massively
parallel processing. But, for algorithmic reasons, many applications
probably never will be subject to speed improvement through
parallel processing. And when it is possible, major investments are
often required-usually algorithms and code must be thoroughly
rethought and reworked to be effective. There are billions of dollars
worth of "dusty deck" uniprocessor-oriented software, ranging from
engineering and scientific simulations to commercial processing,
running on the uniprocessors that constitute virtually all of the
computers in use today. These programs will not soon be running
on parallel processors; those that ultimately do are likely to be
running on systems in which each parallel node is itself an ILP
processor. Thus traditional parallel processing and instruction-level
parallel processing complement each other--only infrequently are
they viewed as alternatives in seeking the same end.

T h e challenge of ILP. The use of ILP promises to continue the
remarkable 20-year record of microprocessor performance improve-
ment that has sustained the computer industry and made possible
the birth of new scientific disciplines such as cornputational physics,
cornputational chemistry and computational cosmology. While the
potential of ILP is exciting, many important questions face the
designer of an ILP system. In this article, with the help of a
hypothetical ILP processor running a sample program, we will
examine these issues and will describe increasingly sophisticated
strategies for exposing and utilizing insuuction-level parallelism.

Parallel Instruction Execution
ILP hardware. Consider a model of hardware consisting of four

functional units and a branch unit connected to a common register
file (Fig. 1A). We will use this model in all three of the hypothetical
processors that we will discuss below. This processor is capable of
starting two integer operations, two memory operations, and a
branch or compare operation every cycle (though on a real machine
one might also expect functional units for floating point and address
computation). In addition to the input operands that one would
normally expect for an operation, each operation has an additional
single-bit input called the predicate. If the predicate input is true, the
operation executes normally. If false, the operation does nothing
and the result register is not updated.

All of these operations get their input operands, including the
predicate, from registers. With this hardware, the fact that five
predicated operations can be started every cycle implies that up to
fifteen operands need to be read from the register file and up to five
results need to be stored into the register file every cycle. A register
file of this kind, which is capable of supporting multiple reads and
writes each cycle, is referred to as a multiported register file. (A real

ARTICLES 1233

machine with this many functional units would be likely instead to
have several multiported register banks.)

Certain operations, such as integer addition and subtraction,
complete in a single cycle (Fig. 1B). Other operations, such as
integer multiplication and memory loads, take multiple cycles to
complete. Nevertheless, much as in a manufacturing assembly line,
this processor can start a new operation on each functional unit
before the previous ones have completed, employing a technique
called pipelining. With pipelining it is possible to have multiple
operations, in various stages of completion, simultaneously execut-
ing on a single functional unit. In fact, if a program were causing the
longest latency operation to be issued on every unit in each cycle,
this machine would be capable of starting five operations per cycle
and of having 11operations "in flight" at all times.

There is thus a fair amount of parallelism available even in this

MULTI-PORTED REGISTER FILE

A

c?E&!2Q Functional Unit U s 4 Execution Latencv

IntegerAdd Integer Unit 1

Integer Multiply Integer Unit 3

Load Memory Port 2

Store Memory Port 1

Compare Branch Unit 1

Compare and Branch Branch Unit 1

Branch Unconditional Branch Unit 1

B

Fig. 1. E~ecution hardware of a sample processor for executing programs
with instruction-level parallelism. (A) Datapaths of the processor. Only those
functional units necessary for the program example are shown. These include
two identical integer units and two identical memory ports. INTl and INT2
perform integer addition, subtraction and multiplication. MEMl and
MEM2 represent the hardware that prepares and presents load and store
operations to the dual-ported data cache. BRANCH performs conditional
and unconditional branches. It is able to read a pair of registers, compare
them and branch on the Boolean result. It is also able to store the boolean
result of a comparison into the register file for use as a predicate. Every
operation has a third input, a boolean value, shown as the thin arrow into
each functional unit. If this boolean value is true, the operation executes
normally. If not, it is not executed at all. (B) Latencies of the various
operations. Only those operations necessary for the program example are
listed. Integer addition, memory stores and branches complete in a single
cycle. Integer multiplication and memory loads take three and two cycles,
respectively, to complete, but they are pipelined; a new operation can be
started every cycle on a functional unit even if the previous ones have not yet
completed. INTl and INT2, both of which perform operations having
unequal latencies, have the restriction that two operations on the same
fknctional unit may not finish at the same time since there is only a single
result bus per functional unit to communicate the result back to the register
file. MEMl and MEM2 are not subject to this restriction since store
operations do not return a value to the register file.

simple processor. The challenge is to make good use of it. The first
question that comes to mind is whether enough ILP exists in
programs to make this possible. Then, if this is so, what must the
compiler and hardware do to successfully exploit it?

A sample program fragment. We shall use a simple program
fragment to illustrate how ILP can be found, enhanced and exploit-
ed (Fig. 2A). A basic block is the largest contiguous set of
statements with no branches into or out of the middle of that
set. The program fragment includes two loops. The inner loop is
the one around basic block D. The outer loop is around the
entire code fragment. On each iteration of the outer loop, the
program may either execute the inner loop or it may execute basic
block B. This behavior is shown pictorially in a control flow graph
(Fig. 2B).

Many techniques for optimizing and parallelizing programs are
dependent upon knowing which portions of the code are executed
more frequently than others. A useful statistic is the frequency of
transitioning between each pair of basic blocks, from which one can
also calculate the execution frequency for each basic block. In
practice, these statistics are gathered by a profiling tool while the
program runs and are saved for later use.

A serial execution of a program is one in which each statement is
completed before the next one is begun. The time a program takes
to execute serially can be calculated by adding the latencies of all
operations in a basic block, multiplying that by the number of times
the block is executed, and summing over all blocks. Serial execution
of our example results in 18,320 operations being executed in
29,680 cycles for an average execution rate of 0.62 operations per
cycle (Fig. 3, A and B).

Basic block ILP. A program can run faster if we use the instruc-
tion-level parallelism that exists between instructions within a basic

B a s i c

O p e r a t i o n B l o c k

L a h d L a h d s t a t e m e n t

A 1 A: T 1 - LOAD X (1 - 1)
A2 T2 - LOAD X (1)
A3 T 3 = 2 * T 1
A4 T4 = T 3 - T2
A5 I F T4 5 0 GOT0 B

C1 C : U - 0
C2 J = l

D l D: T 6 = LOAD X (1 - J)
D2 T4 = T4 + 5
D 3 T7 = T4 * T 6
D4 U = U + T 7
D5 J = J + 1
D6 I F J 5 1 0 GOT0 D

E l E : GOT0 F

B 1 B : T 5 = T 2 - T 1

B2 U = 2 * T 5

F 1 F : T 8 = 3 * V

F 2 V = T 8 + U

F 3 1 = 1 + 1

F 4 I F I S 2 5 GOT0 A

G:

A B

Flg. 2. (A) A fragment of a sample program. Each statement corresponds to
a single operation on the example processor (Fig. 1). (Address computation
is ignored for simplicity.) The first column is the label for the corresponding
statement in the third column. The second column lists the labels for the
basic blocks. ALI statements starting with the one on the same line as a basic
block label up to the statement just prior to the next label are in the same
basic block. (B) The control flow graph for the sample code. Each block
corresponds to a single basic block. The arcs indicate the order in which flow
of control can move from one basic block to another. The existence of two
arcs out of a block is the result of having a conditional branch in that basic
block. The number on an arc indicates the frequency of that arc, that is, the
number of times that that arc was found to have been traversed during an
execution of the program. The frequency of a certain basic block is the sum
of the frequencies of all incoming (or outgoing) arcs.

SCIENCE,VOL.253

block. Instead of starting an instruction only after the previous
instruction has finished. one could start it as soon as the instructions
that generate its input operands have finished and sufficient re-
sources, such as functional units and registers, exist to execute it.
This execution strategy yields a record of execution for most basic
blocks that is slightly more parallel than before. For instance, block
D executes in six cycles instead of in seven cycles (Fig. 4). This
strategy results in a slight reduction in the execution times for basic
blocks A, C, D and F, dropping the total execution to 21,960 cycles
for an average of 0.83 operations per cycle (Fig. 3C) and with as
many as three operations being issued at one time.

Parallelism within each basic block is limited bv the data de~en-
dences between instructions, which results in serial execution. This
is compounded by the execution latency of operations, whlch
lengthens the time to execute the serial chain of instructions. For
instance, in basic block D, statement D 3 uses T6 which is the result
of D l . So, D3 is dependent on D l . Likewise, D 4 is dependent on
D3 through its use of T7. On the other hand, D5 is not dependent
on D l , D2, D3 or D4; independences like this can lead to a small

Basic Numberof Frequency Operations Basic Execution Frequency Weighted
Block Operations Executed Block T i T i

A 5 1000 5000 A 9 1000 9000
C 2 120 240 C 2 120 240
D 6 1200 7200 D 9 1200 10800
E 1 120 120 E 1 120 120
B 2 880 1760 B 4 880 3520
F 4 1000 4000 F 6 1000 6000
Total 18320 	 Total 29680

Average Operations Per Cycle 0.62

A 	 B
Basic Execution Frequency Weighted 	 Basic Execution Frequency Weighted
Block T i T i 	Block T i T i

A 7 1000 7000 A 7 1000 7000
C 1 120 120 C 5 120 600
D 6 1200 7200 D 2 960 1920
E 1 120 120 E 4 120 480
B 4 880 3520 B 4 880 3520
F 4 1000 4000 F 4 1000 4000
Total 21960 Total 17520
Average Operations Per Cycle 0.83 Average Operations Per Cycle 1.05

C 	 D

Basic Execution Frequency Weighted Basic Execution Frequency Weighted
Block T i T i Block T i T i

1A 8 500 3500 H 8 1 8
1C 5 6 0 3 0 0 C 5 120 600
ID 2 480 960 D 2 960 1920
1E 4 60 240 E 4 120 480
1F 1 500 500 ABF 4 998 3992
2A 1 500 500 G 8 1 8
2C 5 300
2D 2 Total 7008
2E 4 Average Operations Per Cycle 2.614g
2F 1 500 1500

Total 8500

Average Operations Per Cycle 2.16

E 	 F

Fig. 3. (A) The number of operations executed in the serial execution of the
program. (B-F) Execution time (per basic block and total) for various
schemes that are discussed over the course of this article. The time to execute
the sample code can be calculated by first computing, for each basic block,
the execution time for a single visit to that basic block, next, weighting the
execution time for each basic block by its execution frequency and, finally,
adding up the weighted execution times. In the case of serial execution, the
execution time for each basic block is computed by adding up the products
of the number of times each operation is executed per visit to that block and
the latency of that operation: (B) serial execution, (C) execution exploiting
only the ILP within individual basic blocks, (D) execution exploiting only
the ILP within individual basic blocks except for loop D which is software
pipelined, (E) outer loop unrolled once, basic blocks lA, lB, lF, 2A, 2B, 2F
trace scheduled, and both copies of loop D software pipelined, (F) outer
loop trace through A, B, F software pipelined and loop D software pipelined.

13SEPTEMBER 1991

I 	 I
Fig. 4. Record of execution for basic block D when exploiting the ILP
within that block.

amount of parallelism within a single basic block. The dependences
between operations are often represented as a graph (Fig. 5) with
the nodes representing the statements and the arcs representing the
dependences between statements. The longest path through a
dependence graph is called the critical path. Consider the depen-
dence graph for basic block D. T k n g into account the latencies of
the operations, the critical path for D, through D l , D3 and D4
(which are thus called critical path operations), is six cycles long. Six
cycles is thus the shortest time in which basic block D can be
executed.

Global ILP. Exploiting the parallelism within individual basic
blocks led only to a 30% speedup (Fig. 3C); we could expect more
if the computations in separate basic blocks could also be executed
in parallel with one another. The problem is that basic blocks are
separated by branches, most often conditional branches. Frequently,
the branch condition can only be calculated at the end of the basic
block and only then is it possible to determine the identity of the
basic block that is to be executed next. This would appear to
frustrate any attempts to execute basic blocks in parallel.

One approach is to recognize that although we may not yet know
whether the next basic block is to be executed. we could be certain
that a subsequent one must be. In our example, while executing
basic block A, even though branch A5 may not have been executed,
it is certain that basic block F must be executed since all paths from
A lead to it. In addition, we could test the branch condition in F4
immediately to determine whether another iteration is to be exe-
cuted. If this turns out to be the case, we now know that basic blocks
A and F from the next iteration. too. must definitelv be executed. , ,

This already allows us to execute the operations from four basic
blocks in parallel (assuming that they are not dependent on one
another) without yet knowing which way the branch A5 in the first
iteration is going. This type of parallelism is termed control paral-
lelism.

At times, we might find that there is inadequate control parallel-
ism to fully utilize the functional units. The second approach for
finding more parallelism, termed speculative execution, relies on the
fact that there is little to be lost in using otherwise idle resources to
execute operations whose results we might, possibly, end up using.
Although we may not yet be positive that the program will actually
flow to certain subsequent blocks, we can still choose to specula-
tively execute operatidns from those blocks in parallel. operations
executed speculatively must be capable of being ignored if the flow
does not later mandate their execution (and in real machines one
must solve the difficult problem of treating error conditions raised
by speculative operations). Thus, for example, stores to memory are
rarely candidates for speculative execution.

without knowing which way any branch actually does go, the
transition frequencies for our example (Fig. 2B) show that the path
from basic block A to B to F and back to A will be repeatedly
executed multiple times. Thus a reasonable strategy is to use eve&
cycle that would otherwise be wasted to execute instructions spec-
ulatively down this expected path. If we execute operations on this
path as soon as their input operands are available, the resulting
record of execution displays considerable parallelism. When this is

ARTICLES 1235

Fig. 5. (A) The code for basic block D. Parallelism within a basic block is
limited by the data dependences between instructions and by the execution
latency of operations. For instance, operation D3 uses T6 which is the result
of Dl. So, D3 is dependent on D l and cannot begin until D l has finished.
Likewise, D4 is dependent on D3 through its use of T7. On the other hand,
D5 is not dependent on Dl, D2, D3 or D4. Such independence leads to a
small amount of parallelism within individual basic blocks. (B) The depen-
dence graph for basic block D. The ILP within the basic block is represented
by a graph with the nodes representing the operations and the arcs
representing the dependences between operations. The input to Dl, labeled
''@X(I- J)," is the address of the array element X(1-J).

B a s i c
O p e r a t i o n B l o c k
Lab& statement

D l D: T 6 = LOAD X (1 - J)
D2 T 4 = T 4 +5
D 3 T 7 = T 4 * T 6
D 4 U = U + T 7
D 5 J = J + 1
D 6 I F J L 1 0 GOT0 D

A

compared to the records of execution for the individual basic blocks
A, B, and F with no speculative execution, the improvement (assum-
ing that branches always go in the expected direction) is almost a
factor of 4. In this case three or four operations are consistently
started per cycle. This is by no means an atypical situation.

For the past 20 years, researchershave been gathering experirnen-
tal data on the amount of available instruction-level parallelism for
various workloads and under a variety of assumptions (4-7). Al-
though the results have varied with the experimental conditions, a
consistent pattern has emerged: potential ILP, when limited to basic
blocks, offers speedups of between a factor of 2 and 3.5. When
techniques that move operations from block to block are used, the
potential jumps to a factor of between 5 and 20, with even more
speedup available in various applications such as array-oriented
programs. By using estimated probabilities of branch direction, a
system can selectively execute those operations which are most likely
to be profitable. Experiments (8, 9) and experience have indicated
that branch directions are sufficientlypredictable to make speculative
execution practical.

U T4 5 QX(1-J) J 1

T7

u
B

ILP Architectures
So far we have only demonstrated the end result of instruction-

level parallelism, the record of execution, without having said much
about how this is effected. How exactly are the necessary decisions
made as to when an operation should be executed and whether an
operation should be speculativelyexecuted? The alternatives can be
broken down depending on the extent to which these decisions are
made by the compiler rather than by the hardware and on the
manner in which information regarding pardelism is communicat-
ed by the compiler to the hardware via the program.

A computer architecture is a contract between the class of
programs that are written for the architecture and the set of
processor implementations of that architecture. Usually this contract
is concerned with the instruction format and the interpretation of
the bits that constitute an instruction, but in the case of ILP
architectures it extends to information embedded in the program
pertaining to the available parallelism. With this in mind, ILP
architectures can be classified as follows:

Sequential architectures: Architectures for which the program is
not expected to convey any explicit information regarding parallel-

ism. Superscalar processors (10-14) are representative of ILP pro-
cessor implementations for sequential architectures.

Dependence architectures: Architectures for which the program
explicitly indicates the dependences that exist between operations.
Dataflow processors (15-17) are representative of this class.

Independence architectures: Architectures for which the program
provides information as to which operations are independent of one
another. Very Long Instruction Word (18-21) processors are an
example of the class of independence architectures.

These architectural alternatives are elaborated upon below and the
three types of processors are discussed in the next section (22).

Sequential architectures. Since the compiler neither identifies paral-
lelism nor makes scheduling decisions, the program contains no
explicit information regarding the dependences between the instruc-
tions. If instruction-level parallelism is to be employed, the depen-
dences that exist must be determined by the hardware, which must
then make the scheduling decisions as well.

Dependence architectures. The compiler, or the writer of a program,
identifies the parallelism in the program and communicates it to the
hardware by specifying the dependences between operations. This is
typicdy done by specifying, for each operation, the list of other
operations that are dependent upon it. The hardware must make
scheduling decisions at run-time which are consistent with the
dependence constraints.

Independence architectures. The compiler identifies the parallelism in
the program and communicates it to the hardware by specifying
which operations are independent of one another. This information
is of direct value to the hardware, since it knows with no further
checking which operations it can execute in the same cycle. Unfor-
tunately, for any given operation, the number of independent
operations is far greater than the number of dependent ones and, so,
it is impractical to specify all independences. Instead, for each
operation, independences with only a subset of d independent
operations (those operations that the compiler thinks are the best
candidates to execute concurrently) are specified.

By listing operations that could be executed simultaneously, code
for an independence architecture may be very close to the record of
execution produced by an implementation of that architecture. If the
architecture additionally requires that programs specify where (on
which functional unit) and when (in which cycle) the operations are
executed, then the hardware makes no run-time decisions and the
code is virtually identical to the desired record of execution. The
Very Long Instruction Word (VLIW) processors that have been
built to date are of this type and represent the predominant examples
of machines with independence architectures. A particular processor
implementation of an independence architecture of this type could
choose to disregard the scheduling decisions embedded in the
program, making them at run-time instead. In doing so, the
processor would still benefit from the independence information but
would have to perform all of the scheduling tasks of a superscalar
processor. Furthermore, when attempting to execute concurrently
two operations that the program did not specify as being indepen-
dent of each other, it must determine independence, just as a
superscalar processor must.

ILP Processor Implementations
Superscalar processors. The goal of a superscalar processor is to

execute many operations in pardel even though the hardware is
handed a sequential program. But a sequential program is construct-
ed with the assumption only that it will execute correctly when each
operation waits for the previous one to finish, and that is the only
order that the architecture guarantees to be correct. The first task,

SCIENCE, VOL. 253

then, for a superscalar processor is to understand, for each instruc-
tion, which other instructions it actually is dependent upon. With
every instruction that a superscalar processor issues, it must check
whether the instruction's operands (registers or memory locations
that the instruction uses or modifies) interfere with the operands of
any other instruction that is either:

Already in execution, or
Has been issued but is waiting for the completion of interfering

instructions that would have been executed earlier in a sequential
execution of the program, or

Is being issued concurrently but would have been executed
earlier in a sequential execution of the program.

If none of these conditions is true, the instruction in question is
independent of all these other instructions and it can be allowed to
begin executing immediately. If not, it must be delayed until the
instructions on which it is dependent have completed execution. In
the meantime, the processor may begin execution of later instruc-
tions which prove to be independent of the ones that are being
delayed. In addition, the superscalar processor must decide exactly
when and on which available functional unit to execute the instruc-
tion. The IBM System/360 Model 91, built in the early 1960s,
utilized a method called Tomasulo's Algorithm (23) to carry out
these functions.

Note that a superscalar processor need not issue multiple opera-
tions per cycle in order to achieve a certain level of performance. For
instance, in the case of our sample processor (Fig. l) , the same
performance could be achieved by pipelining the functional units
and instruction issue hardware five times as deeply, speeding up the
clock rate by a factor of five but issuing only one instruction per
cycle. This strategy has been termed superpipelining (24). Super-
pipelining may result in some parts of the processor (such as the
instruction unit and communications busses) being less expensive
and better utilized and other parts (such as the execution hardware)
being more costly and less well used.

DatafEow processors. The objective of a dataflow processor is to
execute an instruction at the earliest possible time subject only to the
availability of the input operands and a functional unit upon which
to execute the instruction. Unlike a superscalar processor, it counts
on the program to provide information about the dependences
between instructions. This is accomplished by including in each
instruction a list of successor instructions. (An instruction is a
successorof another instruction if it uses as one of its input operands
the result of that other instruction.) Each time an instruction
completes, it creates a copy of its result for each of its successor
instructions. As soon as all of the input operands of an instruction
are available, the hardware fetches the instruction, which specifies
the operation to be performed and the list of successor instructions.
The instruction is then executed as soon as a functional unit of the
requisite type is available. This property, whereby the availability of
the data triggers the fetching and execution of an instruction, is what
gives rise to the name of this type of processor. Because of this
property, it is redundant for the instruction to specify its input
operands. Rather, the input operands specify the instruction! If
there is always at least one instruction ready to execute on every
functional unit, the dataflow processor achieves peak performance.

As we have seen, computation within a basic block typically does
not provide adequate levels of parallelism. Thus superscalar and
VLIW processors use control parallelism and speculative execution
to keep the hardware fully utilized. Dataflow processors have
traditionally counted on control parallelism alone to fully utilize the
functional units. A dataflow processor is more successful than the
others at looking far down the execution path to find abundant
control parallelism. When successful, this is a better strategy than
speculative execution because every instruction executed is a useful

one and the processor does not have to deal with error conditions
raised by speculative operations.

Very Long Instruction Word processors. In order to execute opera-
tions in parallel, the system must determine that the operations are
independent of one another. Superscalar processors and dataflow
processors represent two ways of deriving this information at
run-time. In the case of the dataflow processor, the explicitly
provided dependence information is used to determine when an
instruction may be executed-so that it is independent of all other
concurrently executing instructions. The superscalar processor must
do the same but, because programs for it lack any explicit informa-
tion, it must also first determine the dependences between instruc-
tions. In contrast, the program for a VLIW processor specifies
exactly which functional unit each operation should be executed on
and exactly when each operation should be issued so as to be
independent of all operations that are being issued at the same time
as well as of those that are in execution.

With the VLIW processor, it is important to distinguish between
an instruction and an operation. An operation is a unit of compu-
tation, such as an addition, memory load, or branch, which would
be referred to as an instruction in the context of a sequential
architecture. A VLIW instruction is the set of operations that are
intended to be issued simultaneously. It is the task of the compiler
to decide which operations should go into each instruction. This
process is termed scheduling. Conceptually, the compiler schedules
a program by emulating at compile-time what a dataflow processor,
with the same execution hardware, would do at run-time. All
operations that are supposed to begin at the same time are packaged
into a single VLIW instruction. The order of the operations within
the instruction specifies the functional unit on which each operation
is to execute. A VLIW program is a transliteration of a desired
record of execution which is feasible in the context of the given
execution hardware.

The compiler for a VLIW machine specifies that an operation be
executed speculatively merely by performing speculative code mo-
tion, that is, scheduling an operation before the branch that
determines that it should, in fact, be executed. At run-time, the
VLIW processor blindly executes this operation exactly as specified
by the program just as it would for a non-speculative operation.
Speculative execution is virtually transparent to the VLIW processor
and requires little additional hardware. When the compiler decides
to schedule an operation for speculative execution, it can arrange to
leave behind enough of the state of the computation to assure
correct results when the flow of the program requires that the
operation be ignored. The hardware required for the support of
speculative code motion consists of having some extra registers, of
fetching some extra instructions, and of suppressing the generation
of spurious error conditions. The VLIW compiler must perform
many of the same functions that a superscalar processor performs at
run-time to support speculative execution.

Other types of independence architecture processors have been
built or proposed. The superpipelined machine, described above,
issues only one operation per cycle. But if there is no superscalar
hardware devoted to preserving the correct execution order of
operations, the compiler will have to schedule them with full
knowledge of dependencies and latencies. From the compiler's point
of view, these machines are virtually the same as VLIWs, though the
hardware design of such a processor offers some tradeoffs with
respect to VLIWs. Another proposed independence architecture,
dubbed Horizon (25), encodes an integer H into each operation.
The architecture guarantees that all of the past H operations in the
instruction stream are independent of the current operation. All the
hardware has to do to release an operation, then, is assure itself that
no operation older than the Hth previous operation is in flight or

13 SEPTEMBER 1991 ARTICLES 1237

pending. The hardware does all of its own scheduling, unlike
VLIWs and deeply pipelined machines which rely on the compiler,
but the hardware is relieved of the task of determining data
dependence.

ILP Compiler Techniques
Regardless of whether an ILP processor makes the final schedul-

ing decisions at run-time or compile-time, a compiler must generate
code in which operations are rearranged for better performance. In
the case of VLIW processors, the operations are arranged precisely
in their execution order. In the case of superscalar processors, the
hardware can only consider some number of nearby operations
(called the instruction window) at one time. Compilers make use of
their understanding of the processor's hardware scheduling algo-
rithms to produce a rearranged program loosely tailored for that
hardware, giving the processor the greatest possible opportunity to
find parallelism.

Various compiler techniques have been developed to schedule
operations exactly or approximately. The simplest of these address a
single basic block, and are often referred to as local scheduling. For
example, a compiler might schedule each operation by means of a
procedure similar to the following:

1) Use heuristics to pick one of the unscheduled operations
whose predecessors have already been scheduled. Simple heuristics
usudy suffice.

2) Calculate the completion time for each of its predecessor
operations by adding their execution latency to the time at which
they are scheduled to begin execution. Take the largest of these
completion times. This is the earliest time at which the operation can
be scheduled to begin execution.

3) Determine the earliest time thereafter when an appropriate
functional unit is available to perform the operation, that is, no
previously scheduled operation has been assigned to that fimctional
unit at the same time. Schedule the operation at this time on this
functional unit.

4) If there are any remaining unscheduled nodes, repeat the
procedure from step 1.

This procedure could be employed, for example, to the compu-
tation in basic block D, yielding a schedule for a VLIW (Fig. 4).
Note the similarity between the above procedure and the sequence
of steps by which the dataflow processor would execute the same
computation.

Global scheduling techniques. We have seen that most of the
available parallelism is found beyond the boundaries of basic blocks.
Until a decade ago, compiler techniques which scheduled ILP code
by moving it from block to block (cded global scheduling) were
virtually nonexistent. But now two related sets of technologies have
matured to the level that they are used in commercial environments.
The first of these, which we may group under the heading software
pipelining, schedules a loop so that successive iterations of the loop
will execute concurrently while producing code that is as compact as
possible. The second set of techniques, which we may call trace
directed scheduling, deal with scheduling computations with a more
general flow of control, either where the loop structure is not
relevant, or within a (possibly software pipelined) loop body with a
complex flow of control.

Loop parallelism and sofware pipelining. We begin by considering
the loop around the basic block D, which is the most frequently
executed basic block in the program. A record of execution of loop
D would be ideal if it executes all operations as soon as their inputs
and an appropriate functional unit are available. This is what a
dataflow processor would do. If we knew the exact trip count, that

is, the number of iterations of the loop actually executed, we could
achieve the same result as the dataflow processor by unrolling the
loop completely, treating the resulting code as a single basic block
and generating the best possible schedule. Unfortunately, we do not
generally know the trip count at compile-time and, even if we did,
the unrolled code would usudy be too large for this to be a practical
strategy. Our goal, therefore, is to approach the performance of this
impractical approach in a practical way. To achieve this, imagine the
following conceptual strategy. First, we unroll the loop completely.
Then we schedule the code, but with two constraints: (i) d
iterations have identical schedules except that (ii) each iteration is
scheduled some fixed number of cycles later than the previous
iteration.

This fixed delay between the start of successive iterations is termed
the initiation interval. This unrolled code, after scheduling, is
repetitive except for a small portion at the beginning and, likewise,
a small portion at the end. This repetitive portion can be re-rolled to
yield a new loop which is known as the kernel. The prologue is the
code corresponding to the record of execution that precedes the
repetitive part and the epilogue is the code corresponding to the
record of execution following the repetitive part. By executing the
prologue, followed by the kernel an appropriate number of times,
and finally the epilogue, one would come close to re-creating the
ideal record of execution of the unrolled code. Thus, a relatively
small amount of code is able to approximate the ideal (but imprac-
tical) strategy of unrolling the loop completely. This technique for
executing loops is known as software pipelining (26-29).

Software pipelined code (Fig. 6) can be generated using an
algorithm known as modulo scheduling (26). There are two steps to
this: first, determining the initiation interval and, second, creating
the schedule. The objective is to come up with a schedule having the
smdest possible initiation interval, since this corresponds to the
maximum performance. The limiting factor in deciding the initia-
tion interval can either be a critical chain of dependences running
through the loop iterations or a critical resource that is utilized fully.
Scheduling itself proceeds much like local scheduling except that in
step 3, resource conflicts must be avoided not only with operations
from the same iteration but with operations from previous and
subsequent iterations as well. This is done by ensuring that, within
a single iteration, no machine resource is used at two points in time
that are separated by a time interval that is a multiple of the iteration
interval.

Compared to locally scheduled code, whose execution time is
21,960 cycles (Fig. 3C), the execution time with a software pipe-
lined loop D drops to 17,520 cycles (Fig. 3D) for a further 26%
increase in performance over local scheduling, yielding 1.05 opera-
tions per cycle.

Trace scheduling. Intuitively, one might approach the problem of
scheduling operations globally as follows: first, schedule each basic
block; second, move operations about from block to block to
improve the schedule. Unfortunately, this will cause too many
decisions, such as which registers and functional units to use for each
operation, to be made with a local perspective, causing many false
conflicts from a global viewpoint and greatly limiting the quality of
the schedule. Instead, trace scheduling (30, 31) works as follows:

1) The scheduler selects a trace, that is, a linear sequence of basic
blocks. Frequency profiles (Fig. 2B) are used to prune this selection
to the most frequently executed code not yet scheduled. With the
use of loop unrolling and other techniques, large bodies of code can
be considered simultaneously (Fig. 7). (In practice, critical sections
of code might be unrolled a lot, though the compiler must be
mindful of how much code space is being used in doing so.)

2) The entire trace is considered at once. The compiler treats the
trace as if it were a single basic block and schedules it in a manner

SCIENCE, VOL. 253

Fig. 6. VLlW software pipelined code for loop D. For this loop, the integer
units are the critical resources. Since there are three integer operations per
iteration and only two integer units, the maximum sustained rate at which
new iterations can be started is one iteration every two cycles. Taken
together, the prologue, kernel and epilogue correspond to three copies of the
original block D. The operations from these three copies are labeled with the
prefix 1, 2 or 3. The new basic block D (after modulo scheduling with an
initiation interval of 2) consists of only the kernel of the software pipelined
loop. The prologue has been merged in with basic block C, and the epilogue
with basic block E. Since 1D1in the prologue is dependent on C2, C2 must
be scheduled one cycle earlier than the start of the prologue. On the other
hand, C1 can be scheduled as late as the last instruction in the prologue since
it is the predecessor of 1D4. E l , the jump back to basic block F, must be
scheduled in the last instruction of E, that is, at the end of the epilogue.
Good superscalar code would result from a linear ordering of the VLIW code
obtained by a left-to-right, top-to-bottom scan of the VLIW code.

similar to the local scheduling described above. In general, the
compiler will generate synthetic data-precedence edges to prevent
the speculative execution of operations that would be illegal because
they would have permanent effects. During this process, branches
are given no special consideration. With the help of profile infor-
mation, the compiler can choose to schedule operations early, to
delay operations, or to do whatever seems desirable given the
resources at hand. Register allocation, functional unit selection, and
so on, are done only as an operation is being scheduled, preventing
arbitrary choices from unnecessarily constraining the schedule.

3) After scheduling the trace, the compiler must under some
circumstances duplicate operations that have been scheduled. This
occurs for two reasons: first, some operations will have been
scheduled after a conditional jump that they used to precede. In that
case, the operation in question must be duplicated so that it appears
in the off-trace target of the branch. Second, when there are rejoins,
the rejoin must jump to a place after which only operations that were
below the original rejoin may be found. The highest such place in
the schedule formed by the compiler may be below the scheduled
location of some of the operations that originally were after the
rejoin. These operations must then be copied to the end of the
off-trace block that is jumping to the new rejoin location. In
practice, this extra code has been relatively small, but avoiding the
generation of too much code when the flow of control is very
complex can be a concern when scheduling for VLIWs and super-
scalar processors.

The result of this process is trace scheduled code (Fig. 8). With
trace scheduling (and the previously applied software pipelining),
our example executes in 8500 cycles, yielding 2.16 operations per
cycle (Fig. 3E). This translates to a factor of 2.6 improvement over
local ILP, and a 3.5 factor improvement over serial execution. In the
procedure outlined above, we restricted ourselves to selecting a set
of basic blocks that constitute a linear path through the code. In
many cases, it might be desirable to select a set of blocks that
represent a more general flow of control. Extensions of the above
scheduling procedure can handle this more general case (32, 33).

Predicated execution. As we saw earlier, in certain cases there exists
an alternative to this speculative approach to exploiting inter-block

parallelism. This arises when there are distinct computations or
portions of the program that can be executed in parallel without
having to specdate: A dataflow processor (with multiple loci of
control) is well suited to exploiting such pardelism; each locus of
control executes a separate portion of the computation. Since each
locus of control is independently and concurrently executing
branches, the number of ways in which the overall computation can
evolve is combinatorial in nature. This poses a problem for a VLIW
or superscalar processor that is trying to emulate the record of
execution of the dataflow machine, handicapped as it is by having
only a single locus of control; a distinct code sequence must exist for
each possible record of execution that can result on the dataflow
machine, often leading to an intolerable amount of code.

Predicated execution is a mechanism that d o w s a uniprocessor to
more efficiently emulate the dataflow processor. To begin with, all
branches are eliminated in each of the code regions of interest and
each operation is provided, as its predicate input, with a boolean
value that is true if and only if flow of control would have passed
through this operation in the original code. This process is termed
IF-conversion. Given that all branches have been eliminated in the
regions of interest, these regions can be scheduled to execute in
parallel with no combinatorial problems of code size. During
execution, the selective suppression of operations by the predicates
yields the various combinations of execution records that would
have been generated by a multiple locus machine. However, there
are two drawbacks to this approach: first, the selective suppression
of the predicated operations results in wasted execution cycles.
Depending on the nature of the computation, the number of such
wasted cycles may either be greater than or less than the number
wasted during speculative execution. Second, the different paths
through the original code may have different lengths. The IF-
converted code must take as long as the longest path even when a
shorter path is to be executed and, if this computation is on the

B a s i c
O p e r a t i o n B l o c k
L a h e l S t a t e m e n t

1A: T I = LOAD X(1-1)
T2 = LOAD X (I)
T 3 = 2 * T 1
T4 = T 3 - T2
IF T4 > 0 GOT0 1 C

1B: T 5 = T2 - T I
U1 = 2 * T 5

I F : T8 = 3 * V
V = T8 + U1
I = 1 + 1
I F I > 1 0 0 0 GOT0 EXIT

2A: T I 1 = LOAD X (I - 1)
T I 2 = LOAD X (1)
T 1 3 = 2 * T I 1
T I 4 = T 1 3 - T I 2
I F T I 4 > 0 GOT0 2C

2B: T I 5 = T I 2 - T I 1
U2 = 2 * T 1 5

2 F : T 1 8 = 3 V
V = T I 8 + U2
I = I t 1
I F I < 1 0 0 0 GOT0 1A

G:

Fig. 7. Code for the unrolled trace. The body of the outer loop now contains
two copies each of every basic block in the original loop body. The labels of
the two copies of a basic block are distinguished by a prefix of either 1 or 2.
Likewise, the labels of the two copies of each operation are distinguished by
a similar prefix. The temporary variables that hold the results of the second
set of operations have been renamed in a systematic fashion. For instance,
the temporary variable T1 has been renamed T l l in basic block 2A. Since
the expectation is that the trace will tend not to be exited, the sense of
branches lA5 , 1F4 and 2A5 has been reversed. The trace includes only the
basic blocks l A , l B , lF , 2A, 2B and 2F. Not shown are two copies, 1D and
2D, of the software pipelined inner loop as well as basic blocks lC, l E , 2C
and 2E.

Fig. 8. Scheduled code (which is also the record of execution) for the
unrolled trace in Fig. 7. The operations in the trace are scheduled as if the
trace is a single basic block, even though it actually consists of six basic
blocks. This results in operations freely moving above or below branches
determined only by what yields a good schedule. The relative ordering of
branches is not altered. After scheduling, the demarcation between blocks
can be re-established to determine which operations have moved from one
basic block to another. Each branch dehes the end of its basic block. Thus
1Aends at time 8 since 1A5 is scheduled that time. Likewise, lF, 2A and 2F
end at times 9, 10, and 11, respectively. The boundary between basic blocks
1B and 1F and between 2B and 2F are defined by the points at which the
branches from 1E and 2E, respectively, enter the trace. The rule used here is
that the rejoin after trace scheduling should be at the earliest point that does
not include operations that were originally above the rejoin. The earliest
instruction, that does not include any operations that originally were from
1A or 1B, is instruction 9. Since instruction 8 is part of 1A and instruction
9 is in lF, this means that 1B is now an empty block. Likewise, 2B is an
empty block. Once the basic blocks have been demarcated, it is clear what
code motion has been effected. For instance, 2F1 has been speculatively
moved up by five blocks, past three conditional branches and two rejoins,

critical path, performance is degraded.
Predicated execution is often beneficial when executing loops

which have branches in the body of the loop. The trace A-B-F
through the outer loop of the sample code is such an example
because it contains the branch A5. The successive iterations of the
trace are the computations that should be executed in parallel. After
IF-conversion, the operations in the trace can be software pipelined
in much the same way that loop D was. This results in an overall
execution time of 7008 cycles, yielding an average of 2.61 opera-
tions per cycle (Fig. 3F). This constitutes more than a fourfold
speedup over the serial execution of the program. The software
pipelining of a trace through the outer loop also illustrates the point
that trace scheduling and software pipelining can be applied either
singly, as alternatives to one another, or in conjunction with one
another.

Future Work
In the past 3 years, ILP has gone from being a 30-year-old field of

research with ahandfid of produced each year, to being one
of the two or three dominant areas in the field of computer
architecture. However, ILP is an extremely controversial field of
computer science. Most researchers agree on the desirability and
practicality of ILP and sophisticated compiling, but the consensus
stops there. All three types of implementations discussed above have
their advocates, as do various blends of those technologies. A better
understanding of the relative merits of the alternatives is central to
the future design and use of ILP systems. Much of the research in
progress involves the quantitative evaluation of the alternatives
presented above, and much work remains in the invention and
prototyping of new techniques to exploit ILP.

Available parallelism. One area of investigation involves measuring
how much parallelism is available in programs. Many of the
disagreements explored above may boil down to this issue. Unfor-
tunately, there is little agreement about what workloads are impor-
tant. Often, depending upon their backgrounds, researchers have
very different views on this matter. This contributes to the differ-
ences of opinion since the amount of ILP available varies dramati-
cally with the choice of programs being measured. If relatively little
ILP is available, perhaps a factor of 2 or 3, then the arguments in
favor of superscalar architectures may become overwhelming. If
instead the typical available improvement factor is in the 5 to 20
range, then the objections to VLrWs may be small compared to the
difficulty of building a superscalar to exploit that much ILP; many
researchers believe that such a superscaler would be completely

into 1A. In general, if an operation is moved up past a rejoin, it must be
copied into the off-trace code just prior to the rejoin. The rejoin at the top
of 1F comes after 1F2 which must, therefore, be copied to the end of 1E.
Likewise, code that has moved down past a conditional branch must be
copied into the off-trace code immediately following the exit. Once again,
good superscalar code would result from a linear ordering of the VLIW code
obtained by a left-to-right, top-to-bottom scan of the VLIW code.

impractical. Finally, if massive quantities of ILP are typically avail-
able, dataflow may turn out to be the only architecture that can
exploit it. In the authors' opinion, most of the debates about ILP
will remain hollow until the type and amount of parallelism available
in programs is classified and quantified.

Object-code compatibility. Processors that can each run the same
object code, unchanged, are said to be object-code compatible. This
is desirable, since it permits the replacement of an old processor with
a new one without recompilation. Superscalar processors are more
flexible than VLIW processors when new hardware technologies
mandate changed latencies, since they schedule operations after,
rather than before, the object code is produced. Important unan-
swered questions relate to this issue: are superscalar processors as
flexible as they seem, or is recompilation required for them as well if
they are to perform well when latencies change? Instead of distrib-
uting machine-level object-code, can the paradigm of software
distribution change to one with a greater emphasis on a language
level representation that is between the machine language and
source language levels?

~rchitec&raivariations.Another important area of research is the
design of hybrid architectures and processors which distill the good
properties of each of the above classifications while overcoming their
shortcomings. The Horizon processor is a good example of such a
compromise. Other important questions remain in the design of
processors, such as whether to issue multiple operations per cycle or
whether to design machines which are superpipelined.

Speculative execution. ILP is an area that has had a relatively
real-world orientation. There have been several commercial imple-
mentations of ILP processors which have been quite novel and
ambitious, but which have, nevertheless, only scratched the surface
of what is possible. Much engineering and research remains out-
standing in the areas of register allocation, handling general flow of
control, the use of predicates, and so forth. Studies have suggested
that the bulk of ILP is accessible only when one is willing to do large
amounts of speculative execution. Yet only a few systems have
begun to wrestle with the practical implications of speculatively
triggering error conditions, which might or might not be spurious.
Also, none of the systems built to date have seriously tried to extend
ILP to nonscientific codes, where the memory disambiguation
problem becomes much more difficult.

T h e merits of dataflow processors. Dataflow architectures have held
great promise for over two decades. The dataflow model of compu-
tation is also an important unifying concept in ILP: it serves as an
idealized framework and reference standard for ILP. But the com-
mercial viability of dataflow architectures has remained a controver-
sial question. The dataflow debate revolves around its potential for

SCIENCE, VOL. 253 1240

massive levels of ILP with excellent object code compatibility, its
shortcomings in supporting existing programs written in conven-
tional languages or programs with little parallelism, and the practi-
cality of its synchronization hardware.

SoJware pipelining versus loop unrolling. The compiler techniques
that we have described apply equally to VLIW and superscalar
implementations. However, there are many open questions in the
areas of scheduling, register allocation, and code generation. For
example, we have presented two different approaches to scheduling
loop codes: software pipelining and the trace scheduling of unrolled
loops. There are examples of code where one or the other is clearly
superior, but little is known about where the boundary lies. At other
times, software pipelining and trace scheduling are cbmplementary
and work well in concert. Both sets of techniques have been
implemented in commercial processors (19, 20), but neither irnple-
mentation was a suitable testbed on which these issues could be
explored.

There is little argument about the desirability of allowing software
to arrange code for more ILP. But whether a large increment over
what can be done today is desirable, possible, or practical is a
controversial question. Whether a significant amount-of this work
can realistically be done in the hardware is an area with more
opinions than facts.

REFERENCES AND NOTES

1. P. P. Gelsinger, P. A. Gargini, G. H. Parker, A. Y. C. Yu, IEEE Spectrum 26, 43
(1989).

2. Data A d instruction caches are fast, small memories which automatically retain
frequently referenced data and instructions, allowing much faster access most of the
time.

3. Pipelined functional units have the ability to break an operation into smaller steps,
allowing new operations to start before earlier ones have finished using the same
arithmetic unit.

4. E. M. Riseman and C. C. Foster, IEEE Transactions on Computers 21, 1405 (1972).
5. C. C. Foster and E. M. Riseman, ibid., p. 1411.
6. A. Nicolau and J. A. Fisher, in Proceedings of the Fourteenth Annual Microprogram-

ming Workhop (IEEE, New York, NY, 1981), pp. 171-182.
7. D. W. Wall, in Proceedinns of the Fourth International Conference on Architectural

Supportfor Programming &uages and Operating Sys t em (ACM, New York, NY,
1991), pp. 176188.

8. S. McFarling and J. Hennessy, 	 in Proceedings of the Thirteenth International
Symposium on ComputerArchitecture (IEEE, New York, NY, 1986), pp. 396-403.

9. J. A. Fisher, T h e Static Jump Predictability of Programs+Data for Instruction-Level

Parallelism, Hewlett-Packard Laboratories Technical Report (in press).
10. J. E. Thornton, in Procedings of the AFIPS Fall Joint Computer Conference (AFIPS,

New York, NY, 1964), vol. 26, p. 33.
11. D. W. Anderson, F. J. Sparacio, R. M. Tomasulo, IBM J . Res. Develop. 11, 8

11 967).
\ - . 	 - 1 .

12. 	80960CA User's Manual, No. 270710-001 (Intel Corporation, Santa Clara, CA,
1989).

13. 	IBM J . Res. Develop. 34 (1990) (special issue on IBM RISC System/6000
processor).

14. M. Johnson, Superscalar Microprocessor Design (Prentice-Hall, Englewood Cliffs, NJ
1991).

15. Gi;;dand K. Gostelow, IEEE Computer 1 5 (1982).
16. J. Gurd, C. C. Kirkham, I. Watson, Commnn. A C M 28, 34 (1985).
17. G. M. Papadopoulos and D. E. Culler, in Proceedings ofthe Seventeenth International

Symposium on ComputerArchitecture (ACM, New York, NY 1990), pp. 82-91.
18. A. E. Charlesworth, IEEE Computer 14, 18 (1981).
19. R. P. Colwell, R. P. Nix, J. J. O'DonneU, D. B. Papworth, P. K. Rodrnan, in

Proceedings ofthe Second International Conference on Architectural Support for Program-
ming Languages and Operating Sys t em (ACM, New York, NY, 1987), pp. 180-192.

20. B. R. Rau, D. W. L. Yen, W. Yen, R. A. Towle, IEEE Computer 22 (1989).
21. 	i s60 64-Bit Microprocessor Programmer's Reference Manual, No. 240329-001 (Intel

Corporation, Santa Clara, CA, 1989).
22. Note that our list does not include vector architectures (and associated processors),

although one could be defined corresponding to our assumed execution hardware
(Fig. 1). Vector processors are not true ILP processors. They are best thought of
as complex instruction set computers (CISC), that is, processors for a sequential
architecture with (complex) vector instructions which possess a certain stylized
parallelism internal to each vector instruction. However, despite the commercial
success that they have had, vector processors are less general in their ability to
exploit all forms of instruction-level parallelism due to their stylized approach to
parallelism. Vector processors are treated in many textbooks, for instance, the one
by K. Hwang and F. A. Briggs [Computer Architecture and Parallel Processing
(McGraw-Hill, New York, 1984)l.

23. R. M. Tomasulo, I B M J . Res. Develop. '11, 25 (1967).
24. N. P. Jouppi, IEEE Transactions on Computers 38, 1645 (1989).
25. M. R. Thistle and B. J. Smith, in Proceedings $Supercomputing '88 (IEEE, New

York, NY, 1988), pp. 3 5 4 1 .
26. B. R. Rau and C. D. Glaeser, in Proceedings of the Fourteenth Annual Workshop on

Microprogramming (IEEE, New York, NY, 1981), pp. 183-198.
27. P. Y. T. Hsu, Highly Concurrent Scalar Processing Technical Report N o . C S G - 4 9

(University of Illinois, Urbana, 1986).
28. M. Lam, in Proc. A C M S I G P L A N '88 Conference on Programming Language Design

and Implementation (ACM, New York, NY, 1988), pp. 318-328.
29. J. C. Dehnert, P. Y.-T. Hsu, J. P. Bratt, in Proc. Third International Conference on

Architectural Support for Programming Languages and Operating Systems (ACM, New
York, NY, 1989), pp. 2638 .

30. J. A. Fisher, IEEE Transactions on Computers 30, 478 (1981).
31. J. R. Ellis, Bulldog: A Compiler for VLIWArchitectures (MIT Press, Cambridge,

MA, 1985).
32. J. L. Lynn, in Proceedings of the Sixteenth Annual Workshop on Microprogramming

(IEEE, New York, NY, 1983), pp. 11-22.
33. J. A. Fisher, Trace Scheduling-2, an Extension ofTrace Scheduling, Hewlett-Packard

Laboratories Technical Report (in press).

13 SEPTEMBER 1991 	 ARTICLES 1241

