
New Approaches to Robotics 

In order to build autonomous robots that can carry out 
useful work in unstructured environments new approach- 
es have been developed to building intelligent systems. 
The relationship to traditional academic robotics and 
traditional artificial intelligence is examined. In the new 
approaches a tight coupling of sensing to action produces 
architectures for intelligence that are networks of simple 
computational elements which are quite broad, but not 
very deep. Recent work within this approach has demon- 
strated the use of representations, expectations, plans, 
goals, and learning, but without resorting to the tradi- 
tional uses.of central, abstractly manipulable or symbolic 
representations. Perception within these systems is often 
an active process, and the dynamics of the interactions 
with the world are extremely important. The question of 
how to evaluate and compare the new to traditional work 
still provokes vigorous discussion. 

T HE FIELD OF ARTIFICIAL INTELLIGENCE (AI) TRIES TO 

make computers do things that, when done by people, are 
described as having indicated intelligence. The goal of AI has 

been characterized as both the construction of useful intelligent 
systems and the understanding of human intelligence (1). Since AI's 
earliest days (2) there have been thoughts of building truly intelli- 
gent autonomous robots. In academic research circles, work in 
robotics has influenced work in AI and vice versa (3). 

Over the last 7 years a new approach to robotics has been 
developing in a number of laboratories. Rather than modularize 
perception, world modeling, planning, and execution, t h e  new 
approach'builds intelligent control systems where many individual 
modules each directly generate some part of the behavior of the 
robot. In the purest form of this model each module incorporates its 
own perceptual, modeling, and planning requirements. An arbitra- 
tion or mediation scheme, built within the framework of the 
modules, controls which behavior-producing module has control of 
which part of the robot at any given time. 

The work draws its inspirations from neurobiology, ethology, 
psychophysics, and sociology. The approach grew out of dissatis- 
factions with traditional robotics and AI, which seemed unable to 
deliver real-time performance in a dynamic world. The key idea of 
the new approach is to advance both robotics and AI by considering 
the problems of building an autonomous agent that physically is an 
autonomous mobile robot and that carries out some useful tasks in 
an environment that has not been specially structured or engineered 
for it. 
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There are two subtly different central ideas that are crucial and 
have led to solutions that use behavior-producing modules: 

Situatedness: The robots are situated in the world-they do not 
deal with abstract descriptions, but with the "here" and "now" of the 
environment that directly influences the behavior of the system. 

Embodiment: The robots have bodies and experience the world 
directly-their actions are part of a dynamic with the world, and the 
actions have immediate feedback on the robots' own sensations. 

An airline reservation system is situated but it is not embodied-it 
deals with thousands of request per second, and its responses vary as 
its database changes, but it interacts with the world only through 
sending and receiving messages. A current generation industrial 
spray-painting robot is embodied but it is not situated-it has a 
physical extent and its servo routines must correct for its interactions 
with gravity and noise present in the system, but it does not perceive 
any aspects of the shape of an object presented to it for painting and 
simply goes through a pre-programmed series of actions. 

This new approach to robotics makes claims on how intelligence 
should be organized that are radically different from the approach 
assumed by traditional AI. 

Traditional Approaches 
Although the fields of computer vision, robotics, and AI all have 

their fairly separate conferences and specialty journals, an implicit 
intellectual pact between them has developed over the years. None 
of these fields is experimental science in the sense that chemistry, for 
example, can be an experimental science. Rather, there are two ways 
in which the fields proceed. One is through the development and 
synthesis of models of aspects of perception, intelligence, or action, 
and the other is through the construction of demonstration systems 
(4). It is relatively rare for an explicit experiment to be done. Rather, 
the demonstration systems are used to illustrate a particular model in 
operation. There is no control experiment to compare against, and 
very little quantitative data extraction or analysis. The intellectual 
pact between computer vision, robotics, and AI concerns the 
assumptions that can be made in building demonstration systems. I t  
establishes conventions for what the components of an eventual fully 
situated and embodied system can assume about each other. These 
conventions match those used in two critical projects from 1969 to 
1972 which set the tone for the next 20 years of research in 
computer vision, robotics, and AI. 

At the Stanford Research Institute (now SRI International) a 
mobile robot named Shakey was developed ( 5 ) .  Shakey inhabited a 
set of specially prepared rooms. It navigated from room to room, 
trying to satisfy a goal given to it on a teletype. It would, depending 
on the goal and circumstances, navigate around obstacles consisting 
of large painted blocks and wedges, push them out of the way, or 
push them to some desired location. Shakey had an onboard black- 
and-white television camera as its primary sensor. An ofioard 
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computer analyzed the images and merged descriptions of what was 
seen into an existing symbolic logic model of the world in the form 
of first order predicate calculus. A planning program, STRIPS, 
operated on those symbolic descriptions of the world to generate a 
sequence of actions for Shakey. These plans were translated through 
a series of refinement into calls to atomic actions in fairly tight 
feedback loops with atomic sensing operations using Shakey's other 
sensors, such as a bump bar and odometry. 

Shakey only worked because of very careful engineering of the 
environment. Twenty years later, no mobile robot has been demon- 
strated matching all aspects of Shakey's performance in a more 
general environment, such as an office environment. The rooms in 
which Shakey operated were bare except for the large colored blocks 
and wedges. This made the class of objects that had to be represent- 
ed very simple. The walls were of a uniform color and carefully 
lighted, with dark rubber baseboards, making clear boundaries with 
the lighter colored floor. This meant that very simple and robust 
vision of trihedral corners between two walls and the floor could be 
used for relocalizing the robot in order to correct for drift in the 
odometric measurements. The blocks and wedges were painted 
different colors on different planar surfaces. This ensured that it was 
relatively easy, especially in the good lighting provided, to find edges 
in the images separating the surfaces and thus to identify the shape 
of the polyhedron. Blocks and wedges were relatively rare in the 
environment, eliminating problems due to partial obscurations. 

At MIT, a camera system and a robot manipulator arm were 
programmed to perceive an arrangement of white wooden blocks 
against a black background and to build a copy of the structure from 
additional blocks. This was c d e d  the copy-demo (6). The programs 
to do this were very specific to the world of blocks with rectangular 
sides and would not have worked in the presence of simple curved 
objects, rough texture on the blocks, or without carefully controlled 
lighting. Nevertheless it reinforced the idea that a complete three- 
dimensional description of the world could be extracted from a 
visual image. It legitimized the work of others, such as Winograd 
(7), whose programs worked in a make-believe world of blocks-if 
one program could be built which understood such a world 
completely and could also manipulate that world, then it seemed 
that programs which assumed that abstraction could in fact be 
connected to the real world without great difficulty. 

The role of computer vision was "given a two-dimensional image, 
infer the objects that produced it, including their shapes, positions, 
colors, and sizes" (8). This attitude lead to an emphasis on recovery 
of three-dimensional shape (9), from monocular and stereo images. 
A number of demonstration recognition and location systems were 
built, such as those of Brooks (10) and Grimson ( I I ) ,  although they 
tended not to rely on using three-dimensional shape recovery. 

The role of A1 was to take descriptions of the world (though 
usually not as geometric as vision seemed destined to deliver, or as 
robotics seemed to need) and manipulate them based on a database 
of knowledge about how the world works in order to solve 
problems, make plans, and produce explanations. These high-level 
aspirations have very rarely been embodied by connection to either 
computer vision systems or robotics devices. 

The role of robotics was to deal with the physical interactions 
with the world. As robotics adopted the idea of having a complete 
three-dimensional world model, a number of subproblems became 
standardized. One was to plan a collision-free path through the 
world model for a manipulator arm, or for a mobile robot-see the 
article by Yap (12) for a survey of the literature. Another was to 
understand forward kinematics and dynamics-given a set of joint 
or wheel torques as functions over time, what path would the robot 
hand or body follow. A more usem, but harder, problem is inverse 
kinematics and dynamics-given a desired trajectory as a function of 

time, for instance one generated by a collision-free path planning 
algorithm, compute the set of joint or wheel torques that should be 
applied to follow that path within some prescribed accuracy (13). 

It became clear after a while that perfect models of the world 
could not be obtained from sensors, or even CAD databases. Some 
attempted to model the uncertainty explicitly (14, 15) and found 
strategies that worked in its presence, while others moved away 
from position-based techniques to force-based planning, at least in 
the manipulator world (16). Ambitious plans were laid for combin- 
ing many of the pieces of research over the years into a unified 
planning and execution system for robot manipulators (17), but 
after years of theoretical progress and long-term impressive engi- 
neering, the most advanced systems are still far from the ideal (18). 

These approaches, along with those in the mobile robot domain 
(19, 20), shared the sense-model-plan-act framework, where an itera- 
tion through the cycle could often take 15 minutes or more (18, 19). 

The New Approach 
Driven by a dissatisfaction with the performance of robots in 

dealing with the real world, and concerned that the complexity of 
run-time modeling of the world was getting out of hand, a number 
of people somewhat independently began around 1984 rethinking 
the general problem of organizing intelligence. It seemed a reason- 
able requirement that intelligence be reactive to dynamic aspects of 
the environment, that a mobile robot operate on time scales similar 
to those of animals and humans, and that intelligence be able to 
generate robust behavior in the face of uncertain sensors, an 
unpredictable environment, and a changing world. Some of the key 
realizations about the organization of intelligence were as follows: 

Agre and Chapman at MIT claimed that most of what people 
do in their day-to-day lives is not problem-solving or planning, but 
rather it is routinc activity in a relatively benign, but certainly 
dynamic, world. Furthermore the representations an agent uses of 
objects in the world need not rely on naming those objects with 
symbols that the agent possesses, but rather can be defined through 
interactions of the agent with the world (21, 22). 

Rosenschein and Kaelbling at SRI International (and later at 
Teleos Research) pointed out that an observer can legitimately talk 
about an agent's beliefs and goals, even though the agent need not 
manipulate symbolic data structures at run time. A formal symbolic 
specification of the agent's design can be compiled away, yielding 
efficient robot programs (23, 24). 

Brooks at MIT argued that in order to r edy  test ideas of 
intelligence it is important to build complete agents which operate 
in dynamic environments using real sensors. Internal world models 
that are complete representations of the external environment, 
besides being impossible to obtain, are not at d necessary for agents 
to act in a competent manner. Many of the actions of an agent are 
quite separable--coherent intelligence can emerge from indepen- 
dent subcomponents interacting in the world (25-27). 
AU three groups produced implementations of these ideas, using 

as their medium of expression a network of simple computational 
elements, hardwired together, connecting sensors to actuators, with 
a small amount of state maintained over clock ticks. 

Agre and Chapman demonstrated their ideas by building pro- 
grams for playing video games. The first such program was called 
Pengi and played a concurrently running video game program, with 
one protagonist and many opponents which can launch dangerous 
projectiles (Fig. 1). There are two components to the architec- 
ture-a visual routine processor (VRP), which provides input to the 
system, and a network of standard logic gates, which can be 
categorized into three components: aspect detectors, action suggestors, 
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Fig. 1. The Pengi system (21) played a video game called Pengo. The control 
system consisted of a network of logic gates, organized into a visual system, 
a central system, and a motor system. The only state was within the visual 
system. The network within the central system was organized into three 
components: an aspect detector subnetwork, an action suggestor subnet- 
work, and an arbiter subnetwork. 

Pengi Pengo 

and arbiters. The system plays the game from the same point of view 
as a human playing a video game, not from the point of view of the 
protagonist within the game. However, rather than analyze a visual 
bit map, the Pengi program is presented with an iconic version. The 
VRP implements a version of Ullman's visual routines theory (28) ,  
where markers from a set of six are placed on certain icons and 
follow them. Operators can place a marker on the nearest opponent, 
for example, and it will track that opponent even when it is no 
longer the nearest. The placement of these markers was the only 
state in the system. Projection operators let the player predict the 
consequences of actions, for instance, launching a projectile. The 
resdts of the VRP are analyzed by the first part of the central 
network and describe certain aspects of the world. In the mind of the 
designer, output signals designate such things as "the protagonist is 
moving," "a projectile from the north is about to hit the protago- 
nist," and so on. The next part of the network takes Boolean 
combinations of such signals to suggest actions, and the third stage 
uses a fixed priority scheme (that is, it never learns) to select the next 
action. The use of these types of deictic representations was a key 
move away from the traditional AI approach of dealing only with 
named individuals in the world (for instance, opponent-27 rather 
than the deictic the-opponent-which-is-closest-to-the-protagonist whose 
objective identity may change over time) and lead to very different 
requiremints on the sort of reasoning that was necessary to perform 
well in the world. 

Rosenschein and Kaelbling used a robot named Flakey, which 
operated in the regular and unaltered office areas of SRI in the 
vicinity of the special environment for Shakey that had been built 
two decades earlier. Their architecture was split into a perception 
subnetwork and an action subnetwork. The networks were ultimate- 
ly constructed of standard logic gates and delay elements (with 
feedback loops these provided the network with state), although the 
programmer wrote at a much higher level of abstraction-in terms 
of goals that the robot should try to satisfy. By formally specifying 
the relationships between sensors and effectors and the world, and 
by using off-line symbolic computation, Rosenschein and Kael- 
bling's high-level languages were used to generate provably correct, 
real-time programs for Flakey. The technique may be limited by the 
computational complexity of the symbolic compilation process as 
the programs get larger and by the validity of their models of sensors 
and actuators. 

Brooks developed the subsumption architecture, which deliber- 

ately changed the modularity from the traditional AI approach. 
Figure 2 shows a vertical decomposition into task achieving behav- 
iors rather than information processing modules. This architecture 
was used on robots which explore, build maps, have an onboard 
manipulator, walk, interact with people, navigate visually, and learn 
to coordinate many conflicting internal behaviors. The implemen- 
tation substrate consists of networks of message-passing augmented 
finite state machines (AFSMs). The messages are sent over pre- 
defined "wires" from a specific transmitting to a specific receiving 
AFSM. The messages are simple numbers (typically 8 bits) whose 
meaning depends on the designs of both the transmitter and the 
receiver. An AFSM has additional registers which hold the most 
recent incoming message on any particular wire. The registers can 
have their values fed into a local combinatorial circuit to produce 
new values for registers or to provide an output message. The 
network of AFSMs is totally asynchronous, but individual AFSMs 
can have fixed duration monostables which provide for dealing with 
the flow of time in the outside world. The behavioral competence of 
the system is improved by adding more behavior-specific network to 
the existing network. This process is called layering. This is a 
simplistic and crude analogy to evolutionary development. As with 
evolution, at every stage of the development the systems are tested. 
Each of the layers is a behavior-producing piece of network in its 
own right, although it may implicitly rely on the presence of earlier 
pieces of network. For instance, an explore layer does not need to 
explicitly avoid obstacles, as the designer knows that the existing 
avoid layer will take care of it. A fixed priority arbitration scheme is 
used to handle conflicts. 

These architectures were radically different from those in use in 
the robotics community at the time. There was no central model of 
the world explicitly represented within the systems. There was no 
implicit separation of data and computation-they were both dis- 
tributed over the same network of elements. There were no pointers, 
and no easy way to implement them, as there is in symbolic 
programs. Any search space had to be a bounded in size a priori, as 
search nodes could not be dynamically created and destroyed during 
a search process. There was no central locus of control. In general, 
the separation into perceptual system, central system, and actuation 
system was much less distinct than in previous approaches, and 
indeed in these systems there was an intimate intertwining of aspects 
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Fig. 2. The traditional decomposition for an intelligent control system 
within A1 is to break processing into a chain of information processing 
modules (top) proceeding from sensing to action. In the new approach 
(bottom) the decomposition is in terms of behavior-generating modules 
each of which connects sensing to action. Layers are added incrementally, 
and newer layers may depend on earlier layers operating successfully, but do 
not call them as explicit subroutines. 
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of all three of these capabilities. There was no notion of one process 
calling on another as a subroutine. Rather, the networks were 
designed so that results of computations would simply be available 
at the appropriate location when needed. The boundary between 
computation and the world was harder to draw as the systems relied 
heavily on the dynamics of their interactions with the world to 
produce their results. For instance, sometimes a physical action by 
the robot would trigger a change in the world that would be 
perceived and cause the next action, in contrast to directly executing 
the two actions in sequence. 

Most of the behavior-based robotics work has been done with 
implemented physical robots. Some has been done purely in soft- 
ware (21), not as a simulation of a physical robot, but rather as a 
computational experiment in an entirely make-believe domain to 
explore certain critical aspects of the problem. This contrasts with 
traditional robotics where many demonstrations are performed only 
on software simulations of robots. 

Areas of Work 
Perhaps inspired by this early work and also by Minsky's (29) 

rather more theoretical Society of Mind ideas on how the human 
mind is organized, various groups around the world have pursued 
behavior-based approaches to robotics over the last few years. The 
following is a survey of some of that work and relates it to the key 
issues and problems for the field. 

One of the shortcomings in earlier approaches to robotics and A1 
was that reasoning was so slow that systems that were built could 
not respond to a dynamic real world. A key feature of the new 
approaches to robotics is that the programs are built with short 
connections between sensors and actuators, making it plausible, in 
principle at least, to respond quickly to changes in the world. 

The first demonstration of the subsumption architecture was on 
the robot Allen (25). The robot was almost entirely reactive, using 
sonar readings to keep away from moving people and other moving 
obstacles, while not colliding with static obstacles. It also had a 
non-reactive higher level layer that would select a goal to head 
toward, and then proceed in that direction while the lower level 
reactive layer took care of avoiding obstacles. I t  thus combines 
non-reactive capabilities with reactive ones. More importantly, it 
used exactly the same sorts of computational mechanism to do both. 
In looking at the network of the combined layers there was no 
obvious partition into lower and higher level components based on 
the type of information flowing on the connections, or the finite 
state machines that were the computational elements. To  be sure, 
there was a difference in function between the two layers, but there 
was no need to introduce any centralization or explicit representa- 
tions to achieve a later, higher level process having useful and 
effective influence over an earlier, lower level. 

The subsumption architecture was generalized (30) so that some 
of the connections between processing elements could implement a 
retina bus, a cable that transmitted partially processed images from 
one site to another within the system. It applied simple difference 
operators, and region-growing techniques, to segment the visual 
field into moving and nonmoving parts, and into floor and non- 
floor parts. Location, but not identity of the segmented regions, was 
used to implement image-coordinate-based navigation. All the 
visual techniques were known to be very unreliable on single 
gray-level images, but by having redundant techniques operating in 
parallel and rapidly switching between them, robustness was 
achieved. The robot was able to follow corridors and moving objects 
in real time, with very little computational resources by modern 
computer vision standards. 

This idea of using redundancy over many images is in contrast to 
the approach in traditional computer vision research of trying to 
extract the maximal amount of information from a single image, or 
pair of images. This lead to trying to get complete depth maps over 
a full field of view from a single pair of stereo images. Bdard (31) 
points out that humans do not do this, but rather servo their two 
eyes to verge on a particular point and then extract relative depth 
information about that point. With this and many other examples he 
points out that an active vision system, that is, one with control over 
its cameras, can work naturally in object-centered coordinates, 
whereas a passive vision system, that is, one which has no control 
over its cameras, is doomed to work in viewer-centered coordinates. 
A large effort is under way at Rochester to exploit behavior-based or 
animate vision. Dickmanns and Graefe (32) in Munich have used 
redundancy from multiple images, and multiple feature windows 
that track relevant features between images, while virtually ignoring 
the rest of the image, to control a truck driving on a freeway at over 
100 kilometers per hour. 

Although predating the emphasis on behavior-based robots, 
Raibert's hopping robots (33) fit their spirit. Traditional walking 
robots are given a desired trajectory for their body and then 
appropriate leg motions are computed. In Raibert's one-, two-, and 
four-legged machines, he decomposed the problem into indepen- 
dently controlling the hopping height of a leg, its forward velocity, 
and the body attitude. The motion of the robot's body emerges from 
the interactions of these loops and the world. Using subsumption, 
Brooks programmed a six-legged robot, Genghis (Fig. 3), to walk 
over rough terrain (34). In this case, layers of behaviors implement- 
ed first the ability to stand up, then to walk without feedback, then 
to adjust for rough terrain and obstacles by means of force feedback, 
then to modulate for this accommodation based on pitch and roll 
inclinometers. The trajectory for the body is not specified explicitly, 
nor is there any hierarchical control. The robot successfully navi- 
gates rough terrain with very little computation. Figure 4 shows the 
wiring diagram of the 57 augmented finite state machines that 
controlled it. 

There have been a number of behavior-based experiments with 
robot manipulators. Connell(35) used a collection of 17 AFSMs to 
control an arm with two degrees of freedom mounted on a mobile 
base. When parked in front of a soda can, whether at floor level or 
on a table top, the arm was able to reliably find it and pick it up, 
despite other clutter in front of and under the can, using its local 

Fig. 3. Genghis is a six- 
legged robot measuring 

Each rigid leg is attacvhed 
at a shoulder joint with 
two degrees of rotational 
freedom, each driven by 
a model airplane posi- 
tion controllable servo 
motor. The sensors are 
pitch and roll inclinome- 
ters, two collision-sensi- 
tive antennae, six for- 
ward-looking passive 
pyroelectric infrared sen- 
sors, and crude force 
measurements from the 
servo loops of each mo- 
tor. There are four on- 
board eight-bit micro- 
processors, three of 
which handle motor and 
sensor signals and one of 
which runs the subsumption architecture. 
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Fig. 4. The subsumption network to control Genghis consists of 57 
augmented finite state machines, with "wires" connecting them that pass 
small integers as messages. The elements without bands on top are repeated 
six times, once for each leg. The network was built incrementally starting in 
the lower right corner, and new layers were added, roughly toward the upper 
left corner, increasing the behavioral repertoire at each stage. 

sensors to direct its search. All the AFSMs had sensor values as their 
only inputs and, as output, actuator commands that then went 
through a fixed priority arbitration network to control the arm and 
hand. In this case, there was no communication between the 
AFSMs, and the system was completely reactive to its environment. 
Malcolm and Smithers (36) at Edinburgh report a hybrid assembly 
system. A traditional AI planner produces plans for a robot manip­
ulator to assemble the components of some artifact, and a behavior-
based system executes the plan steps. The key idea is to give the 
higher level planner robust primitives which can do more than carry 
out simple motions, thus making the planning problem easier. 

Representation is a cornerstone topic in traditional AI. Mataric at 
MIT has recently introduced active representations into the sub-
sumption architecture (37). Identical subnetworks of AFSMs are the 
representational units. In experiments with a sonar-based office-
environment navigating robot named Toto, landmarks were broad­
cast to the representational substrate as they were encountered. A 
previously unallocated subnetwork would become the representa­
tion for that landmark and then take care of noting topological 
neighborhood relationships, setting up expectation as the robot 
moved through previously encountered space, spreading activation 
energy for path planning to multiple goals, and directing the robot's 
motion during goal-seeking behavior when in the vicinity of the 
landmark. In this approach the representations and the ways in 
which they are used are inseparable—it all happens in the same 
computational units within the network. Nehmzow and Smithers 
(38) at Edinburgh have also experimented with including represen­
tations of landmarks, but their robots operated in a simpler world of 
plywood enclosures. They used self-organizing networks to repre­
sent knowledge of the world, and appropriate influence on the 
current action of the robot. Additionally, the Edinburgh group has 
done a number of experiments with reactivity of robots, and with 
group dynamics among robots using a Lego-based rapid prototyp­
ing system that they have developed. 

Many of the early behavior-based approaches used a fixed priority 
scheme to decide which behavior could control a particular actuator 
at which time. At Hughes, an alternative voting scheme was 
produced (39) to enable a robot to take advantage of the outputs of 
many behaviors simultaneously. At Brussels a scheme for selectively 
activating and de-activating complete behaviors was developed by 
Maes (40), based on spreading activation within the network itself 
This scheme was further developed at MIT and used to program 

Toto amongst other robots. In particular, it was used to provide a 
learning mechanism on the six-legged robot Genghis, so that it 
could learn to coordinate its leg lifting behaviors, based on negative 
feedback from falling down (41). 

Very recendy there has been work at IBM (42) and Teleos Research 
(43) using Q-learning (44) to modify the behavior of robots. There 
seem to be drawbacks with the convergence time for these algorithms, 
but more experimentation on real systems is needed. 

A number of researchers from traditional robotics (45) and AI 
(46, 47) have adopted the philosophies of the behavior-based 
approaches as the bottom of two-level systems as shown in Fig. 5. 
The idea is to let a reactive behavior-based system take care of the 
real time issues involved with interacting with the world while a 
more traditional AI system sits on top, making longer term executive 
decisions that affect the policies executed by the lower level. Others 
(48) argue that purely behavior-based systems are all that are 
needed. 

Evaluation 
It has been difficult to evaluate work done under the banner of the 

new approaches to robotics. Its proponents have often argued on 
the basis of performance of systems built within its style. But 
performance is hard to evaluate, and there has been much criticism 
that the approach is both unprincipled and will not scale well. The 
unprincipled argument comes from comparisons to traditional 
academic robotics, and the scaling argument comes from traditional 
AI. Both these disciplines have established but informal criteria for 
what makes a good and respectable piece of research. 

Traditional academic robotics has worked in a somewhat perfect 
domain. There are CAD-like models of objects and robots, and a 
modeled physics of how things interact (16). Much of the work is in 
developing algorithms that guarantee certain classes of results in the 
modeled world. Verifications are occasionally done with real robots 
(18), but typically those trials are nowhere nearly as complicated as 
the examples that can be handled in simulation. The sticking point 
seems to be in how well the experimenters are able to coax the 
physical robots to match the physics of the simulated robots. 

For the new approaches to robotics, however, where the emphasis 
is on understanding and exploiting the dynamics of interactions 
with the world, it makes sense to measure and analyze the systems as 
they are situated in the world. In the same way modern ethology has 
prospered by studying animals in their native habitats, not just in 
Skinner boxes. For instance, a particular sensor, under ideal exper­
imental conditions, may have a particular resolution. Suppose the 
sensor is a sonar. Then to measure its resolution an experiment will 
be set up where a return signal from the test article is sensed, and the 
resolution will be compared against measurements of distance made 
with a ruler or some such device. The experiment might be done for 
a number of different surface types. But when that sensor is installed 
on a mobile robot, situated in a cluttered, dynamically changing 
world, the return signals that reach the sensor may come from many 
possible sources. The object nearest the sensor may not be made of 
one of the tested materials. It may be at such an angle that the sonar 
pulse acts as though it were a mirror, and so the sonar sees a 
secondary reflection. The secondary lobes of the sonar might detect 
something in a cluttered situation where there was no such inter­
ference in the clean experimental situation. One of the main points 
of the new approaches to robotics is that these effects are extremely 
important on the overall behavior of a robot. They are also 
extremely difficult to model. So the traditional robotics approach of 
proving correctness in an abstract model may be somewhat mean­
ingless in the new approaches. We need to find ways of formalizing 
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Fig. 5. A number of  
projects involve combin- I tradltlonal A! system 1 
A ,  

ing a reactive system, 
linking sensors, and ac- 
tuators with a traditional 

actuators 

A1 system that does sym- 
bolic reasoning in order t o  tune the parameters of  the situated component. 

our understanding the dynamics of interactions with the world so 
that we can build theoretical tools that will let us make predictions 
about the performance of our new robots. 

In traditional A1 there are many classes of research contributions 
(as distinct from application deployment). Two of the most popular 
are described here. One is to provide a formalism that is consistent 
for some level of description of some aspect of the world, for 
example, qualitative physics, stereotyped interactions between 
speakers, or categorizations or taxonomies of animals. This class of 
work does not necessarily require any particular results, theorems, or 
working programs to be judged adequate; the formalism is the 
important contribution. A second class of research takes some input 
representation of some aspects of a situation in the world and makes 
a prediction. For example, it might be in the form of a plan to effect 
some change in the world, in the form of the drawing of an analogy 
with some schema in a library in order to deduce some non-obvious 
fact, or it might be in the form of providing some expert-level 
advice. These research contributions do not have to be tested in 
situated systems-there is an implicit understanding among re- 
searchers about what is reasonable to "tell" the systems in the input 
data. 

In the new approaches there is a much stronger feeling that the 
robots must find everything out about their particular world by 
themselves. This is not to say that a priori knowledge cannot be 
incorporated into a robot, but that it must be non-specific to the 
particular location in which the robot will be tested. Given the 
current capabilities of computer perception, this forces behavior- 
based robots to operate in much more uncertain and much more 
coarsely described worlds than traditional A1 systems operating in 
simulated, imagined worlds. The new systems can therefore seem to 
have much more limited abilities. I would argue (48), however, that 
the traditional systems operate in a way that will never be transport- 
able to the real worlds that the situated behavior-based robots 
already inhabit. 

The new approaches to robotics have garnered a lot of interest, 
and many people are starting to work on their various aspects. Some 
are trying to build systems using only the new approaches, others are 
trying to integrate them with existing work, and of course there is 
much work continuing in the traditional style. The community is 
divided on the appropriate approach, and more work needs to be 
done in making comparisons in order to understand the issues 
better. 
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