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Specific DNA Binding by c-Myb: Evidence for a 
Double Helix-Turn-Helix-Related Motif 

The c-Myb protein is a sequence-specific DNA binding protein that activates transcrip- 
tion in hematopoietic cells. Three imperfect repeats (R,, R2, and R3) that contain 
regularly spaced tryptophan residues form the DNA binding domain of c-Myb. A 
fragment of c-Myb that contained the R2 and R3 regions bound specifically to  a DNA 
sequence recognized by c-Myb plus ten additional base pairs at the 3' end of the 
element. The R2R3 h a p e n t  was predicted to  contain two consecutive helix-turn-helix 
(HTH) motifs with unconventional turns. Mutagenesis of amino acids in R2R3 at 
positions that correspond to DNA-contacting amino acids in other HTH-containing 
proteins abolished specific DNA binding without affecting nonspecific DNA inter- 
actions. 

T HE C-MYB NUCLEAR ONCOPROTEIN 

is a transcriptional activator whose 
expression is linked to the differenti- 

ation state of hematopoietic cells (1, 2). The 
c-Myb protein functions in expression of 
mim-1, c-myc, cdc2, and the gene that en- 
codes DNA polymerase a (3). It also acti- 
vates transcription from the human imrnu- 
nodeficiency virus-1 long terminal repeat 
(4). Oncogenic activation of c-my& can occur 
when truncated versions of c-Myb are ex- 
pressed that give rise to versions that lack 
either an NH2-terminal phosphorylation 
site that regulates specific DNA binding (5)  
or a COOH-terminal trans-repressor do- 
main (1) .  In addition, point mutations in 
the DNA binding domain can impose alter- 
native differentiation phenotypes on trans- 
formed myeloid cells (6). The DNA binding 
domain is located near the NH2-terminus 
and is composed of three highly conserved, 
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imperfect 51- or 52-residue repeats (desig- 
nated R,, R2, and R,); only R2 and R, are 
required for sequence-specific DNA binding 
(7, 8). Each repeat contains three regularly 
spaced tryptophans that are important for 
maintaining an active DNA binding struc- 
ture (9, 10). In order to examine the mini- 
mal DNA binding domain, we engineered a 
312-bp region of chicken c-myb (11) that 
encoded the R2R3 domain by the polyrner- 
ase chain reaction (PCR) for expression in 
Escheruhia coli (12). The R2R3 recombinant 
polypeptide was purified to near homogene- 
ity (13) for use in the studies. 

We used the electrophoretic mobility shift 
assay (14) to monitor DNA binding to an 
oligonucleotide that contained two Myb 
recognition elements (2xMRE-probe). Two 
complexes .(C1 and C2) were. observed (.Fig. 
1A) in a proportion that was dependent on 
the protein-to-DNA ratio. When increasing 
amounts of protein were added, complex C1 
was formed first, followed by C2, which was 
the predominant complex at high protein- 
to-DNA ratios. Competition with specific 
and nonspecific oligonucleotides showed 
that both complexes are specific (15). These 
results demonstrate that R2R, is sufficient 
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Fig. 1. DNA binding of bacterially ex- C 
pressed Myb R2R, analyzed bv the elec- 
trophoretic mobility shifr assay. (A) Com- 
plexes (C1 and C2) were formed between 
a duplex DNA probe (20 fmol) containing 
two Myb recognition elements (2xMRE) 
and the indicated amounts of purified Myb 
R,R, polypeptide (in femtomoles) (14). 

4lP I 
(6 and C) We generated probe? with a 
single MRE and variable 5'- or 3'-exten- 
sions by treating the labeled downstream 

1 2  3 4 5 6 7 8 9 101112  

or  upstream extension probes (1 7) with the indicated enzymes. Each probe is designated "R + x" or "L 
+ x" where x gives the s i x  of the right (R, downstream) or left (L, upstream) extension (in base pairs) 
beyond the MRE hexamer: R + 33, no treaunent (lane 1); R + 29, Bam H I  + Klenow (lane 2); R 
+ 25, Ava I + Klenow (lane 3); R + 19, Rsa I (lane 4); R + 15, Hind 111 + Klenow (lane 5); R + 
10, Xba I + Klenow (lane 6); R + 7, Barn HI + Klenow (lane 7); R + 6, Xba I + mung bean nuclease 
(lane 8); R + 3, Ram HI + mung bean nuclease (lane 9), L + 15, Hind ILI + Klenow (lane 10); L 
+ 25, Ava I + Klenow (lane 11); and L + 33, no treatment (lane 12). Complex formation was analyzed 
with 12.5-fmol of probe and 200-fmol of pure R2R, polypeptide either in the absence (R)  or in the 
presence (C) of a large excess (1 kg) of nonspecific polyd(1.C) competitor. 

for specific DNA binding to the MRE con- 
sensus sequence (16). However, the C1 and 
C2 complexes had different half-lives (tip); 
C2 (tl12 < 5 min) was less stable than C1 
(tl12 E 1 hour) (15). Complex C2 may 
contain two molecules of R2R3 bound in a 
less stable complex. 

Using a smaller probe (18 bp) with a 
single MRE (S), we observed a single, spe- 
cific complex that migrated in a position 
similar to C1 but had a short half-life (15). 
To assess the contribution of sequences 
flanking the core consensus sequence to the 
stability of the complex, we designed two 
probes with a single MRE that contained an 
extension of about three helical turns in 
either the 5' or 3' direction and a series of 
restriction sites that allowed the length of 
the probe to be varied (1 7). The binding of 
R,R, to this series of probes was anal@ed 
by the electrophoretic mobility shift assay. 
In the absence of competitor, complex for- 
mation required a 3' extension of at least 6 
to 7 bp (Fig. 1B). Under the same condi- 
tions, complex formation with probes that 
had variable 5' extensions was substantiallv 
reduced. In the presence of excess nonspe- 
cific competitor, no complexes were ob- 
served wit% probes containing 5' extensions; 
however, a 3' extension of 10 bp or more 
allowed complex formation (Fig. 1C). This 
suggests that R2R3 is asymmetrically posi- 
tioned relative to the consensus core se- 
quence and that nonspecific interactions on 
one side of the recognition element within 

approximately one turn of a helix are impor- 
tant for stabilizing the protein-DNA com- 
plex. However, although downstream ex- 
tensions increased the half-lives of the 
complexes, the sequences of the 3' exten- 
sions also influenced complex stabilities 
(15). 

Each of the RlR2R3 repeats was predict- 
ed to contain three a helices, and it was 
hypothesized that the second and third hel- 
ices were similar to the helix-turn-helix 
(HTH) motif found in bacterial transcrip- 
tional repressors and eukaryotic home- 
odomain-containing proteins (18). It was 
suggested that one of the R2R3 HTH-like 
domains participates in sequence-specific 
binding to DNA, whereas the other inter- 
acts nonspecifically with DNA (1 0, 19). To 
refine such a model so that it could be tested 
by mutagenesis, we reanalyzed the R2 and 
R, sequences (20) using two structure pre- 
diction methods (21). When a direct align- 
ment based on the highly conserved glycine 
at HTH position 9 was used (4amino acid 
turn), the similarity between HTH domains 
and R2R3 was not significant. However, by 
extending the turn in R, by one amino acid 
and the turn in R2 by two amino acids, we 
obtained significant similarity between an 
HTH motif and R2R3 (21) (Fig. 2A). 

In order to predict which amino acids in 
the putative recognition helices of R2 and 
R, participate in sequence-specific recogni- 
tion of DNA, we aligned the amino acid 
sequences of R2 and R, with those of 

transcriptional repressors and homoeotic 
proteins in which amino acids that are di- 
rectly involved in base pair contacts have 
been identified (recognition positions) (22, 
23). Arginine, glutamine, and asparagine 
residues (amino acids frequently found in 
direct hydrogen-bond interaction with base 
pairs in DNA) (22) thus identified in both 
R2 and R, were mutagenized to alanine. As 
controls, glutamines and arginines outside 
of the putative HTH domains of R2 and R3 
were similarly mutagenized (Fig. 2A) (24). 

Soluble bacterial extracts that contained 
mutated R2R3 were analyzed for specific 
DNA binding to the 2xMRE probe at two 
protein concentrations (Fig. 2B) (25). The 
three mutants outside the putative recogni- 
tion helices (Q14A and R15A in R2 and 
R66A in R3) (Fig. 2, A and B) bound the 
probe like the wild-type protein. AH eight 
mutations in the putative recognition helices 
had decreased specific DNA binding. Three 
of these (N52A in R2 and R103A and 
R104A in R,) retained the ability to bind 
the MRE motif at higher protein concentra- 
tions. The other five (Q42A, R%A, and 
N49A in R2, and N96A and N99A in R,) 
completely eliminated sequence-specific in- 
teraction. These five are all in recognition 
positions (Fig. 2A). Thus, the amino acids 
in R2R3 predicted to participate in DNA 
binding by alignment with other HTH- 
containing proteins were found to be the 
most important for sequence-specific recog- 
nition of the MRE. 

To confirm the conclusion that both 
HTH motifs contribute to sequence-specific 
DNA binding, we investigated the effect of 
the mutations on nonspecific DNA binding 
with nonspecific DNA coupled to magnetic 
Dynabeads (26). At high DNA concentra- 
tions, the R2R3 polypeptides bound the 
DNA-containing beads and were rapidly 
extracted from the solution by a magnet. 
This approach allowed isolation of complex- 
es with short half-lives or low m t y  and 
avoided potential problems caused by dena- 
turation of the proteins that occurs in 
southwestern (DNA-protein) blot experi- 
ments. When tested in this manner, all mu- 
tants except R%A bound nonspecific DNA 
as well as did wild-type R2R3 (Fig. 2C). The 
R%A mutant bound to the nonspecific 
DNA with reduced s t y .  We therefore 
conclude that regions involved in sequence- 
specific DNA recognition are present in 
both R2 and R,. Therefore, our data do not 
show that specific interactions can be attrib- 
uted to one repeat and nonspecific interac- 
tions to the other. 

Our mutational analysis supports the hy- 
pothesis that the DNA binding motif of the 
c-my& proto-oncogene is related to the 
HTH motif. The extra amino acids in the 
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turn may allow for a different angle between 
the two helices, possibly placing the repeat- 
ed tryptophans in configurations that allow 
them to interact (10). We have observed a 
hyperchromicity effect with denaturation of 
purilied R2R3, consistent with a direct 
stacking interaction between the tryp- 
tophan~ (15). Our data show that sequence- 
specific interactions occur through the puta- 
tive recognition helices of both R2 and R3, 

suggesting that the MRE is contacted by 
two consecutive HTH motifs. A single 
straight a helix, such as that found in the 
classical HTH repressors, is only able to 
contact 4 to 6 bp because of the curvature of 
the major groove (27). A larger recognition 
surface is created in these proteins by forma- 
tion of dimers that allow two recognition 
helices to contact neighboring major 
grooves. Myb binds DNA as a monomer (8) 
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Fig. 2. Specific and nonspecific DNA binding of mutated Myb R2R3. (A) (Top) Sequence of 
recombinant chicken Myb R2R3 aligned by the tryptophans in R2 and R3. The NH2-terminal 
methionine introduced during the PCR engineering is not removed in the expressed protein (15). 
Positions that were later mutated are indicated by arrows. Repeated tryptophans are underlined. 
(Bottom) Alignment of Myb R2 and R3 with HTH polypeptides for which structures of protein-DNA 
complexes have been reported (22, 23). Antp, Antemapedia; Engr, Engrailed; Rep, repressor. Myb R2 
is aligned with a &amino acid turn; R3 with a 5-amino acid turn. To fit in these larger turns in the 
alignment, we superscripted some amino acids in the turn region of R2 and R3. Amino acids in helix 
2 that are directly involved in base pair contacts are marked as boxes. The DNA contact positions given 
for the two Cro proteins are from low-resolution structures (28) and are thus probable positions. 
Positions in Myb R2 and R3 that strongly affect specific DNA biding when mutated are circled. 
Positions with a moderate effect on DNA biding are marked as diamonds. (B) Bacterial extracts that 
contained similar concentrations of recombinant Myb R2R3 polypeptides were analyzed for specific 
DNA binding with the 2xMRE probe (14) in the presence of polyd(1-C) (1 pg). In the upper gel, 
approximately equimolar amounts of R2R3 protein and DNA were used (giving mainly C1) whereas 
the protein-to-DNA ratios in the lower gel were 100-fold higher (giving predominantly C2). The 
mutants analyzed are indicated above each lane. The first letter indicates the wild-type amino acid, the 
number indicates the position of the mutated amino acid according to the numbering given in (A), and 
the second letter indicates the amino acid after mutation. Lane 1 shows free probe. (C) We monitored 
nonspecific DNA binding by adsorbig the bacterial extracts to magnetic DNA-allinity beads without 
MRE sequences and then analyzing the unbound polypeptides (+) by SDS-polyacrylamide gel 
electrophoresis in parallel with nontreated extracts (-). The mutants analyzed are indicated above each 
lane. The arrow indicates the R2R3-overexpressed polypeptide. Molecular size markers are shown at the 
right in kilodaltons. Abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; 
E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, 
Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. 

but might achieve an extended contact sur- 
face with a double HTH-related motif in 
which the recognition helix of each motif 
contacts adjacent major grooves. 
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ca2+-~nduced ca2+ Release in Sea Urchin Egg 
Homogenates: Modulation by Cyclic ADP-Ribose 

Calcium-induced calcium release (CICR) may function widely in calcium-mediated 
cell signating, but has been most thoroughly characterized in muscle cells. In  a 
homogenate of sea urchin eggs, which display transients in the intracellular free 
calcium concentration ([Ca2+Ii) during fertilization and anaphase, addition of Ca2+ 
triggered CICR. Ca2+ release was also induced by the CICR modulators ryanodine 
and caffeine. Responses to both Ca2+ and CICR modulators (but not Ca2+ release 
mediated by inositol 1,4,5-trisphosphate) were inhibited by procaine and ruthenium 
red, inhibitors of C I C R  Intact eggs also displayed transients of [Ca2+Ii when 
microinjected with ryanodine. Cyclic ADP-ribose, a metabolite with potent Ca2+- 
releasing properties, appears to  act by way of the CICR mechanism and may thus be 
an endogenous modulator of CICR. A CICR mechanism is present in these nonmuscle 
cells as is assumed in various models of intracellular Ca2+ wave propagation. 

E XTRACELLULAR SIGNALS INDUCE OS- 

cillations of [Ca2+Ii or propagated 
waves of intracellular Ca2+ release in 

various nonmuscle cell types. The classic 
example of such complex spatiotemporal 
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behavior of [Ca2+Ii during cell signaling is 
observed during fertilization of the egg. In 
sea urchin, starfish, fish, and frog eggs, 
fertilization elicits a single propagated wave 
of increased [Ca2+Ii starting at the site of 
sperm entry and sweeping in a regenerative 
fashion across the egg at about 10 km/s (1). 
Hamster eggs display both Ca2+ waves and 
a series of periodic transients of [Ca2+Ii after 
fertilization (2). The [Ca2+Ii transient or 
transients at fertilization regulate the meta- 

bolic and developmental activation of the 
egg (3). Other nonmuscle cell types also 
display oscillatory or propagated [Ca2+ 1, 
transients in response to calcium mobilizing 
hormones or Ca2+ itself (4, 5) .  Calcium- 
induced Ca2+ release (CICR), whereby an 
increase in the concentration of extravesicu- 
lar free Ca2+ triggers Ca2+ release from 
intracellular stores, has been characterized in 
muscle fibers and sarcoplasmic reticulum 
(SR) vesicles (6, 7). CICR is mediated by 
the ryanodine receptor (8, 9) and may h c -  
tion in producing both Ca2+ waves and 
oscillations (10, 11) by acting in concert 
with inositol 1,4,5-trisphosphate (IP3)-me- 
diated Ca2+ release. Pharmacological agents 
that modulate CICR include the stimulators 
caffeine and ryanodine and the inhibitors 
procaine and ruthenium red (6, 12), but no 
endogenous modulating compounds (other 
than adenosine nucleotides) have yet been 
reported. We now report direct evidence for 
and characterization of a CICR mechanism 
(distinct from the IP3-mediated release 
mechanism) in sea urchin egg homogenates. 
Also, we present evidence suggesting that 
CICR occurs in the intact cell. Further, 
cyclic adenosine diphosphate (ADP)-ribose 
(cADPR), which is a metabolite of nicotin- 
amide adenine dinucleotide (NAD+) and is 
present in homogenates of urchin eggs (13) 
and various mammalian cells (14), was found 
to modulate the urchin egg CICR mecha- 
nism.' L i e  IP,, cADPR triggers calcium mo- 
bilization and egg activation in urchin eggs 
(15). 

Homogenates of sea urchin eggs supple- 
mented with an adenosine triphosphate 
(ATP)-regenerating system, mitochondrial 
inhibitors, and the calcium-reporting dye 
fura 2, sequester added Ca2+ into vesicular 
stores in an ATP-dependent manner and 
release Ca2+ in response to nanomolar con- 
centrations of either cADPR or InsP, (Fig. 
1) (15). Such homogenates display desensi- 

t 
cADPR 

t 
'P3 

Fig. 1. Ca2+ release induced by EADPR and-IP, 
in egg homogenates measured fluorometricdy 
with fura 2. Addition of cADPR (20 nM, h a l  
concentration) elicited a large rapid Ca2+ release, 
which was then resequestered. IP, (100 nM) 
subsequently triggered a similar release, which 
was also resequestered. The absolute amount of 
Ca2+ released is indicated on the ordinate. Breaks 
in the record occurred during additions to the 
cuvette. Abbreviations: cADPR, cyclic ADP-ri- 
bose; IP,, inositol 1,4,5-trisphosphate. See (30) 
for methods. 
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