
Developments in Automatic Text Retrieval 

Recent developments in the storage, retrieval, and manip- 
ulation of large text files are described. The text analysis 
problem is examined, and modern approaches leading to 
the idenacation and retrieval of selected text items in 
response to search requests are discussed. 

M UCH OF THE INFORMATION CIRCULATING IN THE MOD- 

ern world consists of written, natural language text. Often 
the texts are available in machine-readable form and can 

be stored and reproduced automatically and transmitted from place 
to place on electronic networks. Among the information items now 
routinely processed on computers are electronic messages, wire 
service stories and bulletins, newspaper articles, research papers and 
documents, textbook materials, instruction manuals, dictionary and 
encyclopedia articles, and published materials of many kinds. 

It is easy to store large masses of information, but storage in itself 
is of no value unless systems are designed that make selected items 
available to interested users. In particular, the information content 
must be analyzed, and appropriate content identifiers must be 
generated and attached to the stored items; user needs must be 
identified and formulated in terms understandable by an automated 
system; and representations of document content and user needs 
must be compared, leading to the retrieval of items judged to be 
saciently close to the information requested. 

Conventional Retrieval Methods 
In conventional information retrieval, the stored records are 

normally identified by sets of keywords or phrases known as index 
terms, or simply terms. Requests for information are typically 
expressed by Boolean combinations of index terms, consisting of 
search terms interrelated by the Boolean operators and, or, and not. 
The retrieval system is then designed to select those stored items that 
are identified by the exact combination of search terms specified in 
the available queries. Thus, in a four-term query statement such as 
[(T, and T,) or (T3 and T,)], each retrieved item contains either the 
term pair T, and T,, or the pair T3 and T,, or both. The terms 
characterizing the stored texts may be assigned manually by trained 
personnel; alternatively, automatic indexing methods may be used 
to handle the term assignment automatically. In some systems one 
can avoid or circumvent the content analysis, or indexing, operation 
by using words contained in the texts of the documents for content 
identiiication. When all text words are used for content identifica- 
tion (except for common words specified on a list of excluded 
words), one speaks of a full text retrieval system (1). 
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The conventional retrieval environment has become widely ac- 
cepted, because the Boolean formulations can express synonymous 
term relationships specified by or operators ("minicomputers or 
microcomputers or hand-held calculators") or term phrases specified 
by and operators ("information and retrieval"). Furthermore, one 
obtains fast responses even for very large document collections by 
constructing auxiliary invested index files and performing the search 
operations using list manipulations in the index. In general, the 
index consists of lists of document identifiers for each allowable 
index term: thus, all documents identified.by a given term X are 
included in the corresponding X list in the index. To obtain 
responses to queries such as (T, or T,) and (T, and T,), the system 
extracts the T, and T, lists from the index and constructs a single 
common (T,, T,) list by list-merging operations. The duplicated 
items in the merged list then represent answers to (T, and T,), and 
the unique items on the list are the answers to (T, or T,). 

The list-merge technology is well understood, and a high degree 
of effectiveness is sometimes obtained with conventional inverted 
file searches. However, the use of Boolean operators may prove 
disadvantageous, most importantly because users who are not 
trained in logic find it difficult to generate effective queries that 
produce the proper amount of output and the expected proportion 
of relevant materials. Also, the conventional Boolean logic treats all 
terms as equally important and all retrieved documents as equally 
useful. Thus, the retrieved items are presented to the user in an 
arbitrary order that does not normally correspond to the order of 
usellness of the items. Furthermore, the Boolean logic is unusually 
rigid in a retrieval setting, because the presence of a single query 
term in a document suffices for retrieval in response to an or query 
such as (T, or T, or. . .or T,), whereas the absence of a single query 
term from a document suffices for rejection in response to an and 
query such as (T, and T2 and. . .and T,). 

Refinements have been introduced into the Boolean processing 
environment that are designed to control the query formulation 
process (2) and provide more discriminating output by allowing the 
terms assigned to documents (but not those assigned to queries) to 
carry term weights in decreasing order of presumed term importance 
( 3 ) .  When term weights are introduced, as they are in the so-called 
fuzzy-set retrieval model, the retrieved documents can be ranked in 
decreasing order of the weights of certain matching query terms. 
However, the fizzy-set retrieval system is still based on ordinary 
Boolean logic, and it carries much the same limitations as the 
conventional Boolean model. 

Alternative Retrieval Models 
In the vector space system, the documents are identified by sets of 

attributes, or terms, as in the Boolean system. Instead of assuming 
that all terms are equally valuable, the system uses term weights to 
assign importance indications to the terms. If t distinct terms are 
available for content identification, a document Di is representable 
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Fig. 1. Vector similarity computa- 
tion. D, = (0.8, 0.3), D, = (0.2, 
0.7), Q = (0.4, 0.8), sim(Q, Dl) = 
cosa, = 0.74, sim(Q, D,) = cosa, 
= 0.98. 
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internally as a t-dimensional vector of pairs, Di = (dil, wdi,; di2, 
wdi2;. . .; dit, w ~ , ~ ) ,  where dg represents the jth term assigned to 
documents Di and wdi is the corresponding term weight. In 
principle, all t terms could appear in each vector: a weight of zero 
would be used for terms not present, and larger weights, between 0 
and 1, would designate terms actually assigned to the items (4). 

In the vector processing system, the Boolean queries are replaced 
by weighted term sets similar to those used for the document 
representations. Thus a query Q appears as Q = (q,, w,,; q,, 
w,,;. . .; q,, w,,), where once again a weight of zero is used for terms 
that are absent. When both the stored texts and the information 
requests are represented by weighted term vectors, a global, com- 
posite vector comparison can measure the degree of similarity 
between a query-document pair on the basis of the weights of the 
corresponding matching terms. The cosine measure of similarity, 
computed as the normal inner product between vector elements 
normalized for vector length, has been widely used for this purpose: 

Equation 1 gives the cosine of the angle between vectors Q and 
Di, producing a value of 0 when no common terms exist between 
the vectors and a value of 1 when all terms match and the vectors are 
identical. A typical cosine similarity computation is illustrated in 
Fig. 1 for one sample query and two documents. For example, 
applying the formula of Eq. 1 to the query vector Q = (0.2, 0.8), 
where terms 1 and 2 receive weights of 0.4 and 0.8, respectively, and 
document D, = (0.2, 0.7) produces the following computation: 

as indicated in Fig. 1. 
The vector processing model offers simple, parallel treatments for 

both queries and documents. The model accommodates weighted 
terms and provides ranked retrieval output in decreasing order of 
query-document similarity. Query and document vectors are also 
easily modified, as required for query reformulation and other 
purposes. On the negative side is the assumed lack of relationships 
between terms (formally, the vector space is assumed to be orthog- 
onal, and hence the terms are linearly independent) and the lack of 
theoretical justification for some of the vector manipulations, such as 
the use of the cosine measure to obtain vector similarities. 

The assumption that the terms are independent, which is made in 
other retrieval models as well, implies that the subject matter of each 
item is covered exhaustively by a set of mutually exclusive terms. In 
these circumstances, the greater the number of term matches 
between query and document vectors, the greater the similarity 
between the respective items. In practice, the terms used for 
indexing purposes may not be independent and may exhibit various 
relationships with each other. In such circumstances, the number of 

term matches may not be directly related to the real query-document 
similarity, and the computed vector similarity may not always be . . 

meaningful. In test situations, the vector space approach 
much better retrieval output than the conventional Boolean ap- 
proach normally used in operational retrieval situations. 

Extensions to the vector and Boolean models have been proposed, 
notably including a generalized vector space model based o n  an 
orthogonal vector space of dimension 2' (with 2' basic terms), 
replacing the original space of dimension t (5) .  In the generalized 
space, the basic terms are specified by the different maximal Boolean 
products of the original terms, and these products are automatically 
independent. Furthermore, Boolean queries are representable as 
easily as vector queries, so a common retrieval model is obtained that 
subsumes both Boolean and vector processing models (6). 

Another common retrieval model is the extended Boolean system, 
which accommodates term weights assigned to both query and 
document terms as well as strictness indicators known as D-values 
that are attached to Boolean operators (7). A typical query formu- 
lation in the extended Boolean system would be {[(T,, a) orP1 (T,, 
b)] andP2 (T3, c)), where a, b, and c are the weights for terms T,, T,, 
and T,, respectively, and p, and p, are p values that control the 
strictness of interpretation of the Boolean operators. Values of p 
range from 1 to m; the upper limit represents total strictness of 
interpretation, equivalent to a standard Boolean system, whereas the 
lower limit represents total relaxation, equivalent to a vector pro- 
cessing system where the distinctions between and and or are lost. 
The extended system thus covers vector processing, Boolean, and 
fizzy-set retrieval in a common framework, and it produces vastly 
improved retrieval performance over simple Boolean operations at 
the cost of a substantially increased computational effort. 

The probabilistic retrieval model differs from those previously 
discussed in that it represents an attempt to set the retrieval problem 
on firm theoretical foundations. Concepts of decision theory-a 
theory offering criteria for reaching decisions in situations of 
uncertainty-are used based on the notions of the relevance (and 
nonrelevance) of a document with respect to a query, to reach the 
conclusion that the ex~ected usefulness of a retrieval svstem is 
optimized when the item with the highest probability of relevance is 
extracted from the file at each point (8). This leads to the well- 
known probability-ranking principle, which states that documents 
should be brought to the users' attention in decreasing order of their 
probability of usefulness to the users (9). 

In the probabilistic approach it becomes necessary to estimate for 
each document Di with respect to Qj the quantity P(RellQj, Di), 
the probability of relevance of Di with respect to Qj. One approach 
to this estimation process consists in regarding retrieval as an 
inference, or evidential reasoning process, where an answer to a user 
query is deduced from the evidence provided by each document 
(10). To estimate the overall measure P(RellQj, Di), one considers 
the individual term factors P(RellTk, Di), representing the proba- 
bility that a document Di will be judged relevant to a query, given 
that it contains query term T,. 

In the classical probabilistic models, the needed term probabilities 
are estimated by accumulating a number of user queries containing 
term Tk and determining the proportion of times document Di is 
found relevant to the respective queries; alternatively, a fixed query 
Qj is considered, and an attempt is made to determine the proba- 
bility that an arbitrary document Di containing query term Tk will 
be judged relevant (1 1). In either case, it is necessary to deal with a 
small number of query-document pairs with common terms Tk to 
obtain the needed term probabilities. The difficulties inherent in this 
estimation process and ;he impossibility of gathering enough rele- 
vance data before a search is actually conducted have prevented the 
practical implementation of most probabilistic retrieval strategies. 
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A suggestion recently made replaces the estimation of P(Re1l T,, 
Di) by an estimate of P[Rellx(T,, Di)], where x(T,, Di) is a 
relevance description of term Tk that includes many factors other 
than simple term occurrences in documents-for example, the total 
number of documents containing term T,, the total number of 
documents in the collection, the number of terms in document Di, 
and so on. The formulation using relevance descriptions makes 
available more evidence for estimation purposes. However, it is 
necessary to generate effective relevance descriptions for particular 
collection environments before the model can actually be used, and 
the learning process proposed for this purpose, which uses informa- 
tion derived from sample queries and documents, may be difficult to 
carry out in practical search situations (12). 

The probabilistic retrieval approach accommodates a large num- 
ber of different phenomena about terms and documents as part of 
the probabilistic estimation process, including term co-occurrence 
information, term relationships derived from dictionaries and the- 
sauruses, and prior knowledge about the occurrence distributions of 
terms (13). The model also offers justifications for certain empirical 
procedures used in the vector space model-for example, the use of 
the inner product (the numerator of Eq. 1) to compute similarities 
between queries and documents (14) and the introduction of 
particular forms of term weighting in the vector system (15). 
However, the sample data and subjective relevance assessments of 
documents with respect to queries that are needed in probabilistic 
retrieval may not be available in most operational environments. 

Automatic Indexing and Text Analysis 
All retrieval operations depend crucially on the terms and key- 

words assigned to queries and text items for content representation. 
The assignment of terms, normally called indexing, can be per- 
formed manually by trained personnel or automatically by extraction 
of appropriate information from the document and query texts. The 
assigned terms can in principle be freely chosen, or the choice of 
terms can be controlled by a preexisting schedule of allowable 
indexing units. The following discussion is restricted to the use of 
automatic indexing procedures that use freely assigned vocabulary. 

The simplest type of automatic indexing consists of the assign- 
ment of single-term indexing units to represent text content. A 
typical approach would be to identify the individual words occur- 
ring in the documents of a collection (or in the query statements). A 
stop list of common function words (and, of, or, but, the, and so on) 
would then be used to delete the high-frequency function words that 
are insufficiently specsc to represent document content. A suf i -  
stripping routine would be applied to reduce the remaining words 
to word stem form. A weighting factor w, would be computed for 
each term Tk in document Di to indicate term importarice. Finally, 
each document Di would be represented by a set, or vector, of 
weighted word stems of the kind introduced earlier (16). A typical 
stop list of English common words would include several hundred 
entries. SufFix deletion can similarly be based on a specially con- 
structed short list of deletable sufies (17). S u f i  removal reduces 
entries such as analysis, analyzer, analyzing, and so forth, to a 
common form such as "analy" and helps reduce the size of the 
indexing vocabulary and the length of document vectors. 
AU steps in the indexing chain are straightforward except for the 

term-weighting operation. Term weights are used to distinguish 
terms that are likely to be important for content representation from 
other terms likely to be less important. Various term weighting 
theories have been proposed: the most valuable terms for retrieval 
purposes appear to be those able to distinguish particular documents 
from the remainder of the collection. This suggests that the best 

terms will occur frequently in particular documents, but rarely on 
the outside. Two main comDonents of the term weinht must 

U 

therefore be distinguished: the frequency of occurrence of a term T, 
in a document Di, also known as the term frequency, &k, of T, in 
D ,  and the inverse document frequency, idf,, of term T,, which 
varies inversely with the number of documents to which Tk is 
assigned. (Typically, idf, can be computed as log(N/n,), where N is 
the total number of documents in a collection and nk is the number 
of items with T,.) These two factors can be combined by multipli- 
cation into a single factor, known as the (tf x idf) weight (4, 18). 

In addition to the term frequency and inverse document frequen- 
cy, the length of each document, measured by the number of 
assigned terms, must also be taken into account. Otherwise, the 
longer documents have a better chance of being retrieved than the 
shorter ones because they contain more terms, and hence possibly 
more matching query terms. Each document is given equal chance 
of retrieval by normalizing the term weight and computing the 
weight of term T, in document Di as 

When normalized term weights such as those of Eq. 2 are used for 
both document and query terms, the similarity between documents, 
or between a query and a document, may be computed as the inner 
product between corresponding vector elements; that is, sim(Di, Dj) 
or sim(D, Qj) = Xi=,  wik . wjk. For normalized term weights, the 
inner product computation is then equivalent to the cosine similarity 
of Eq. 1. 

Single-term indexing theories are easily implemented. However, 
substantial questions arise about the appropriateness of single-term 
indexing representations for text items. Indeed, critics believe that 
such an approach represents a dead end: 'The keyword approach 
where absence or presence of keywords and their distributions are 
the only information being considered, has been typically assumed 
by many researchers to be sufficient: However. . .[this] approach 
with statistical techniques has reached its theoretical limit and 
further attempts for improvement are considered a waste of time" 
(19, p. 111). 

Although such a claim reflects sentiment more than fact, attempts 
have been made to refine the text indexing process. One strategy 
consists in considering term specificity and replacing single terms 
that are too broad in scope (insufficiently specific) by term phrases 
composed of several term components while replacing narrow terms 
(terms that are too specific) by broader entities extracted from a 
thesaurus (20). Refined linguistic analysis methods are also usable 
for text indexing, but experience indicates that reliable improve- 
ments in retrieval effectiveness beyond the weighted single-term 
assignments mentioned above are hard to come by. 

Linguistic- and Knowledge-Based Approaches 
Documents and texts are natural language constructs. Hence, it is 

useful to consider various language analysis tools for text-indexing 
purposes. The first possibility consists in using syntactic analysis to 
assign one or more syntactic tags to each word of the input text. 
Such a tagging operation can then be followed by a phrase 
construction process that identifies nominal constructs consisting of 
appropriate noun and adjective combinations usable for the content 
identification of the respective texts. 

Many different syntactic approaches have been used in automatic 
indexing and information retrieval (21). Unfortunately, syntax alone 
is unable to cope with many ambiguities in the natural language, and 
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the accuracy of the available syntactic procedures leaves much to be 
desired. This means that false syntactic constructs may be errone- 
ously assigned for content identification, and useful phrases that 
correctly reflect document content may not be assignable because of 
constraints imposed by the syntactic process. 

Consider as an example a typical sequence such as "Alphabetic 
(adjective) characters (plural noun) occurring (gerund) most (quan- 
tifier) frequently (adverb) in (preposition) running (gerund) text 
(noun) account (noun or verb) for (preposition) 85 to (preposition) 
95 percent (noun) of (preposition) letter (noun) occurrences 
(noun)." In this sentence the phrase "letter occurrences" is easily 
generated as a sequence of two adjacent nouns. The generation of 
the other noun phrases depends on contradictory interpretations of 
the present participles "occurring" and "running." If these are 
interpreted as verb forms (gerunds), the generated noun phrases are 
"alphabetic characters" (correct) and "text account" (false); if, on the 
other hand, the two participles are interpreted as adjectives, then the 
generated phrases are "alphabetic characters occurring" (false) and 
"running text" (correct). In either case, one false phrase is generated 
and one important phrase is lost. Standard syntactic approaches 
generate only 60% of the wanted phrases correctly. Overall, noun 
constructions are thus more reliably obtained with statistical meth- 
ods based on detectable co-occurrences between phrase components 
in the available texts (22). 

Because of the uncertainties inherent in a purely syntactic ap- 
proach, additional semantic criteria may be introduced in the form 
of dictionaries or thesauruses, providing semantic specifications for 
the text words. Thesauruses of many kinds have been constructed, 
often tailored to topic areas and designed to reveal a semantic 
relationship between thesaurus entries. Alternatively, useful infor- 
mation might be extracted from one of the available machine- 
readable dictionaries covering large slices of the language (23). 

However, it is not easy to apply thesauruses and machine-readable 
dictionaries in practical information retrieval. The construction of 
thesauruses and other vocabulary specification tools is an art, and 
there is no guarantee that a thesaurus tailored to a particular text 
collection can be usefully adapted to another collection. As a result, 
it has not been possible to obtain reliable improvements in retrieval 
effectiveness by using thesauruses with a variety of different docu- 
ment collections. In addition, it is difficult to +obtain reliable 
information from machine-readable dictionaries, because most dic- 
tionary entries carry multiple definitions and the relationships 
between multiple defining statements for a single dictionary entry 
are hard to assess. 

A further extension in the sophistication of the text analysis is 
provided by the knowledge-based approaches that are popular in 
artificial intelligence. A knowledge base is a structure representation 
of the subject matter of interest in a particular area of discourse. 
Normally such a knowledge base includes a description of the main 
concepts of interest in an area as well as the properties and 
interrelationship between concepts. Many formalisms have been 
proposed for the representation of knowledge, including semantic 
nets, frames, scripts, and so on (24). Network structures are often 
used; in that case, concepts are represented by network nodes and 
concept relationships by branches between corresponding nodes. An 
excerpt of such a semantic network is shown in Fig. 2. A number of 
basic concepts describing the cardiovascular system are shown in 
Fig. 2, together with selected relationships between certain con- 
cepts. Thus the network specifies that the heart may be affected by 
blood pressure and that a heart attack is an example of a cardiovas- 
cular illness. 

In information retrieval, knowledge bases are used with inference 
rules that provide the rules for traversing the concept network. A 
typical rule might be the following: if concept A is found, and 

concept A is related in the network to concept B by a certain type of 
relationship, then an additional concept C is also valid. Probability 
measures, or weights, may also be used in the network, and these 
weights may then be propagated through the network by appropri- 
ate use of the network traversal rules. 

Many different approaches have been proposed for the implemen- 
tation of intelligent information retrieval systems. Normally, the aim 
is to apply a particular semantic structure built for a particular field, 
together with appropriate inference rules, to derive answers to 
queries starting with the concepts contained in the available docu- 
ment descriptions (25). Among the techniques used to instantiate 
new concepts from old ones that are initially given are spreading 
activation [where initial activation weights attached to input nodes 
produce new activation weights attached to the outputs (26)], the 
calculus of generalized vector norms (27), advanced linguistic 
processing techniques (28), Bayesian inference techniques (29), and 
Dempster-Shafer belief theory (30). In all cases, the general aim is to 
derive a similarity value, or measure of closeness, between query and 
document, computed as the probability that the user's information 
need as expressed in the query statement can be inferred from the 
evidence supplied by each given document; dternatively, one mea- 
sures the degree of belief in the query derivable from the available 
documents, that is, the degree to which the query can be satisfied by 
the available documents. 

Substantial advantages have been claimed for these inference 
techniques in various areas of application, and it is likely that useful 
knowledge structures and reliable inference rules can in fact be 
generated that are valid in well-circumscribed situations for limited 
subject domains. However, substantial doubt remains about the 
viability of techniques based on complex network representations 
when large text collections must be processed in unrestricted subject 
areas. Eco and others have argued in this connection that any 
artificially constructed knowledge structure necessarily provides only 
partial and inadequate representations of meanings: "Semantic 
models such as that of Quillian are already. . .a portion of the 
universe in which a system has intervened in order to establish 
attractions and repulsions [between concepts, thereby favoring some 
concept relationships at the expense of others]" (31, p. 125). 

In any case, complete theories of knowledge representation do not 
exist now. As a result, it is not clear what entities must be included 
in a knowledge base and what relationship between knowledge 
elements must be considered for particular applications. Attempts 
have been made to build very large knowledge bases covering 
unrestricted subject matter, but the applicability to large unrestrict- 
ed document collections is unproven (32). 

Another possibility for the formulation of viable text analysis 
systems that are valid for unrestricted text environments consists in 
performing detailed analyses of the available texts and incorporating 
in the analysis process the multiple contexts in which the words and 
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Fig. 2. Excerpt from a semantic network (topic: cardiovascular system). 
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expressions are used in the available texts. One remembers in this 
connection the pronouncements of Wittgenstein and his followers 
that word meaning cannot adequately be determined by consulting 
preconstructed dictionaries. Rather "for a large class of cases- 
though not for all-in which we employ the word 'meaning' it can 
be defined thus: the meaning of a word is its use in the language" 
(33, p. 21). This view suggests that similarities in word meaning 
might be ascertained by the determination of coincidences in the 
contexts in which the words are used in different text passages. 
When sufficiently large contextual similarities are detected, the 
conclusion follows that the word meanings in the corresponding 
texts are homogeneous. Documents or text passages may then be 
retrieved in answer to available statements of user needs by compar- 
ison of the query statements to the text passages at various levels of 
detail and retrieval of items that exhibit sufficiently similar global 
and local text similarities. Such an approach based on global 
comparisons between all stored texts is reminiscent of the memory- 
based reasoning strategies that have been advocated in other con- 
texts. There are indications that such methods can operate with a 
high degree of accuracy in large text environments (34). A study of 
this approach is presented in a companion piece in this issue (35). 

Retrieval Strategies 
In conventional information retrieval environments, large collec- 

tions of several hundred thousand indexed documents are routinely 
processed, and document references that match the available Bool- 
ean query statements are normally displayed in real time, that is, 
more or less instantaneously, while the users wait at the search 
terminal. Similar operating efficiencies are available in advanced 
vector processing environments, such as the Smart system, where 
tens of thousand of texts, corresponding to hundreds of thousands 
of text paragraphs or millions of sentences, are routinely manipulat- 
ed in real time (36). The search efficiencies are in all cases attribut- 
able to the inverted index lile technologies mentioned above, where 
all items that do not have at least one assigned term in common with 
the queries are immediately rejected. 

Direct rather than inverted lile searches can be implemented for 
large text liles by parallel processing machines. A well-known direct 
file search system, operating without auxiliary index files, has been 
implemented on a Connection Machine with 64,000 individual 
processors. By storing the representation of a different document in 
each processor and broadcasting (sending) the same query to all 
processors, the system can compare a given query with 64,000 
different documents in a single file comparison operation, each 
processor performing the query-document comparison with a dif- 
ferent document at the same time (37). It remains to be seen 
whether the parallel processing approaches will prove cost-effective 
in practical retrieval environments. 

When conventional inverted lile technologies are used, the index- 
ing information pertaining to a single document is dispersed in the 
file in many different document reference lists. This dispersal makes 
it impossible for users to browse through the documents or locate 
documents that are related to previously known texts. Related 
documents can be accessed together by the use of structured text liles 
in which sufficiently similar documents are grouped in common 
classes. Groups, or clusters, of documents can be built by computing 
similarities between pairs of documents on the basis of similarity 
computations such as those specified in Eqs. 1 and 2 and using 
clustering criteria to group sufficiently similar documents (38). 

A typical hierarchical cluster organization is shown in Fig. 3, 
where large document clusters are successively broken down into 
smaller and smaller classes of items. The distance between two x 

Fig. 3. Typical clustered 
file organization. The 
symbols e, W, and 
represent centroids, and 
the symbol x denotes a 
document. 

symbols is inversely related to document similarity; that is, the closer 
the two x symbols, the more similar are the corresponding items. By 
constructing special class representatives, known as centroids, and 
confining the lile searches to clusters with centroids exhibiting large 
query-centroid similarities, one may generate efficient file search 
strategies that bypass most of the collection in any given search. 
Furthermore, when the cluster hypothesis is satisfied, that'is, when 
documents that are jointly relevant to particular queries appear in 
common clusters, the retrieval effectiveness of clustered search 
techniques may also be relatively high (39). However, the construc- 
tion, maintenance, and search of clustered @es is expensive, espe- 
cially for effective cluster structures consisting of many small, tightly 
clustered document groups. When efficiency is important, as it is in 
modern on-line search environments where fast responses are essen- 
tial, the inverted file technology is generally preferred (40). 

A different type of text structuring is based on the so-called 
hypertext model, in which large texts are broken down into linked 
portions of related text (41). Typically, complete text sections are 
then broken down into subsections that are further subdivided into 
individual paragraphs and sentences. All of these text components 
are then appropriately linked, and access to individual text compo- 
nents is obtained by appropriate use of the linked structure. 
Retrieval activities in hypertext may be especially useful for texts 
such as dictionaries and encyclopedias, textbooks, instruction man- 
uals, and so on, that are not meant to be read sequentially (42). The 
queries are then compared in each case with identifiers correspond- 
ing to various portions of the linked structure, and links exhibiting 
high query similarities are followed in the search. Content-linked 
hypertext structures might be automatically generated on the basis 
of computed similarities between text portions with sufficiently high 
similarities (43). 

In addition to structured file organizations, the retrieval process 
may be enhanced by introducing aids to the on-line search process. 
Thus, advanced information display options and graphic terminal 
equipment can help in controlling the search process (44), and 
sophisticated user-system dialogue schemes may be introduced (45). 
One especially simple and effective search strategy based on user- 
system interaction is the well-known relevance feedback method, in 
which user queries are automatically reformulated on the basis of 
relevance judgments obtained from the user for certain documents 
retrieved in earlier searches (46). By adding to the query terms from 
relevant documents retrieved previously or increasing the weight of 
such terms and similarly diminishing the importance of terms 
contained in nonrelevant documents retrieved previously, one ob- 
tains new query formulations that are more similar to the previously 
identified relevant documents and less similar than before to the 
identified nonrelevant items. These feedback queries can produce 
enhancement in retrieval effectiveness ranging from 50 to well over 
100% (47). An illustration of the relevance feedback process appears 
as Fig. 4. Three retrieved documents are represented by x symbols 
and are assumed to have been designated as relevant by the user. The 
relevance feedback process builds a new query statement (the closed 
triangle) that is much more similar (much closer) to the previously 
retrieved documents than the original query. This new query is 
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expected to retrieve new relevant documents that are similar to 
relevant items retrieved earlier. 

Methods analogous to those used for relevance feedback are also 
usable for the modification of document vectors (48). Operations 
with dynamic document spaces using expert system technologies for 
user-system interaction may form the basis of many information 
retrieval activities in the future. 

In the early years of automatic text processing the feeling was 
widespread that it would never be possible to design useful retrieval 
protocols capable of performing satisfactorily in unrestricted text 
environments: "let it be immediately stressed that. . .neither the 
assignment of topic terms to a given request, nor the reformulation 
of a given request are processes which could conceivably be ade
quately mechanized, contrary to some speculation in this direc
tion. . ." (49, p. 344). It is still not possible for computers to 
perform certain complex text processing tasks with the benefit of a 
complete understanding of text content. However, it is not difficult 
to identify useful relationships between different texts and in 
particular between text items and related search requests. The time 
is at hand when sophisticated searches can be conducted with large 
collections of natural language text in unrestricted subject areas that 
can provide high-quality, rapid file access for interested users. 
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Animal Choice Behavior and the 
Evolution of Cognitive Architecture 

Animals process sensory information according to specific 
computational rules and, subsequently, form representa- 
tions of their environments that form the basis for deci- 
sions and choices. The specific computational rules used 
by organisms will often be evolutionarily adaptive by 
generating higher probabilities of survival, reproduction, 
and resource acquisition. Experiments with enclosed col- 
onies of bumblebees constrained to foraging on artificial 
flowers suggest that the bumblebee's cognitive architec- 
ture is designed to efficiently exploit floral resources from 
spatially structured environments given limits on memory 
and the neuronal processing of information. A non-linear 
relationship between the biomechanics of nectar extrac- 
tion and rates of net energetic gain by individual bees may 
account for sensitivities to both the arithmetic mean and 
variance in reward distributions in flowers. Heuristic 
rules that lead to efficient resource exploitation may also 
lead to subjective misperception of likelihoods. Subjective 
probability formation may then be viewed as a problem in 
pattern recognition subject to specific sampling schemes 
and memory constraints. 

T HE EhlERGING FIELD OF COGNITIVE SCIENCE A'ITEMPTS TO 

explain the nature of thought and the appearance of intelli- 
gence. Cognitive analyses have mostly been applied to 

language capabilities and the acquisition of skills in humans (I), but 
have been expanded to include problem-solving and communication 
in animals (2-5). The cognitivist view suggests that the processing 
of information (by either animals or humans) involves three stages. 
First, sensory data are translated and encoded into a form that can be 
manipulated through mental operations. Second, encoded informa- 
tion is acted upon by specific computational rules. And third, these 
rules produce alternative "representational" states that depend on 
the informational input. The concept of "representation" remains 
controversial, especially for animals (5). However, these three stages 
may be viewed, in a less controversial manner, as three components 
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of a single dynamical system mechanistically tied to the organism's 
nervous system. The encoding of information would then corre- 
spond to initial inputs, computational rules correspond to transient 
dynamics, and representations would correspond to the equilibrium 
configurations resulting from the transient dynamics. The animal 
reaches a representation of the environment through the operation 
of specific computational rules applied to a particular pattern of 
incoming sensory information. 

The computational rules used by organisms can be symbol- 
processing programs, as in most artificial intelligence models ( 6 ) ,  or 
can be models of nervous systems, as in neural networks (7). My 
thesis is that these computational rules are evolutionarily adaptive. 
Different computational schemes may generate behaviors or repre- 
sentation of the environment that lead to different efficiencies in the 
use of resources, acquisition of mates, or acquisition of skills 
necessary for survival. Differential efficiencies may then confer 
different evolutionary advantages. The design features of informa- 
tion-processing ("cognitive architecture") may be subject to natural 
selection in a manner analogous to any other aspect of the orga- 
nism's phenotype. 

The link between mental process, cognition, and evolution orig- 
inates in Darwin's writings (8) and has found continuous support 
from many investigators since the Darwinian revolution (9). Many 
more recent studies have explicitly examined the adaptive nature of 
specific mental processes in animals and have argued for varying 
degrees of adaptive specialization in mental function to accornrno- 
date specific ecological requirements (10). Few studies, however, 
have explicitly examined specific computational rules in the evolu- 
tionary ecology of organisms, though the adaptive nature of com- 
putational rules has been proposed (3). In this article, I summarize 
research on floral choice behavior in bumblebees (Bombus spp.) and 
argue for an evolutionary basis for the computational rules em- 
ployed by bees as they acquire floral resources in their natural 
environment. 

Bumblebee as a Model System 
The choice of bumblebees as model experimental organisms was 

not arbitrary. Bumblebees have many features which make them 
ideal for examining the evolution of decision-making processes. 
Individual worker bumblebees are almost exclusively engaged in a 
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