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tors (9). Therefore, the receptor specificity 
of glutamate-stimulated tyrosine phosphor- 

Stimulation of Protein Tyrosine Phosphorylation by 
NMDA Receptor Activation 

The N-methyl-D-aspartate (NMDA) receptor, a subtype of glutamate receptors, plays 
a key role in synaptic plasticity in the nervous system. After NMDA receptor activation, 
calcium entry into the postsynaptic neuron is a critical initial event. However, the 
subsequent mechanisms by which the NMDA receptor signal is processed are incom- 
pletely understood. Stimulation of cultured rat hippocampal cells with glutamate 
resulted in the rapid and transient tyrosine phosphorylation of a 39-kilodalton protein 
(p39). Tyrosine phosphorylation of p39 was triggered by the NMDA receptor and 
required an idux of Ca2+ firom the extracellular medium. Because p39 was found to  
be highly related or identical t o  the microtubule-associated protein 2 kinase, the 
NMDA receptor signal may be processed by a sequential activation of protein kinases. 

G LUTAMATE IS THE PRINCIPAL EXCI- 

tatory neurotransmitter in the 
mammalian central nervous system 

and acts on postsynaptic neurons through 
glutamate receptors that f d  into two main 
categories, the NMDA and non-NMDA 
subtypes (1). NMDA receptors are critical 
for long-lasting physiological modifications 
of neurons (2) and neuronal degeneration 
(3). However, the intracellular mechanisms 
of NMDA receptor signaling and the bio- 
chemical processes through which these re- 
ceptors modify neuronal properties and con- 
nections during development and in the 
mature nervous system are unclear. Alter- 
ations in neuronal phenotype have been 
suggested to involve protein phosphoryla- 
tion (4). Because tyrosine kinases are partic- 
ularly abundant in neurons (5) ,  we tested 

Depamnent of Microbiology and Molecular Genetics, 
Haward Medical School, Boston, MA 02115. 

the hypothesis that protein tyrosine phos- 
phorylation plays a role in propagating the 
NMDA receptor signal. 

Phosphotyrosine-containing proteins in 
primary rat hippocampal cells were exam- 
ined before and after glutamate stimulation 
(6). Immunoblot analyses with two distinct 
antibodies to phosphotyrosine demonstrat- 
ed that stimulation of hippocampal cells 
with 10 p,M glutamate rapidly induced an 
increase in tyrosine phosphorylation of a 
39-kD protein (p39) (Fig. 1A). Several oth- 
er phosphotyrosine-containing polypeptides 
were also detected, but these did not under- 
go any apparent change in the amount of 
tyrosine phosphorylation upon glutamate 
stimulation. The specificity of the polyclonal 
antibodies for phosphotyrosine was demon- 
strated by incubation of the antibody with 5 
mM phosphotyrosine, which prevented sub- 
sequent binding to p39. In contrast, treat- 
ment with 5 mM phosphoserine or 5 mM 

- 

Fig. 1. Induction of  p39 ry- 
rosine ~hosohorvlation after w- 

i1) 0 N M D ~  re;epto; activation. 
(A) Immunoblots of lvsates 

a- - of unstirnulated h i p e a r n -  
- 9 -  - pal cells (lanes 1 and 3) o r  

hippocampal cells stimulat- 
29 - ed for 3 min with glutamate 

(lanes 2 and 4 )  were probed 
with anti-PQT (lanes 1 and 
2) o r  a monoclonal antibodv 

to  phosphotyrosine (Py20) (lanes 3 and 4) .  (B) 
Anti-Ptyr imrnunoblot analyses of  unstimulated 
hippocampal cells (lane l), cells stimulated for 3 
min with glutamate (lane 2), o r  cells stimulated 
for 3 min with glutamate in the presence of  100 
p M  APV (lane 3), 40  p M  CNQX (lane 4), o r  1 
mM sodium kynurenate and 11.3 mM MgCI, 
(lane 5). Cells were pretreated with APV, CNQX, 
o r  sodium hnurenare and 11.3 mM MgCI, for 
10 min before glutamate stimulation. (C) Anti- 
Ptyr immunoblot analyses of  unstirnulated hip- 
pocarnpal cells (lane 1 )  and cells stimulated for 3 
rnin (lane 2)  and 5 min (lane 3) with 50  pM 
NMDA. The arrows in (A), (B), and (C) indicate 
p39. M,, I4Glabeled protein molecular weight 
standards ( X  (D) Time course (in minutes) 
of  the glutamate-induced increase in p39 tyrosine 
phosphorylation. Only part of  the irnmunoblot is 
shown. 
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ylation was examined. The selective NMDA 
receptor antagonist D(-)-2-amino-5- 
phosphonovalerate (APV) inhibited the glu- 
tamate-induced tyrosine phosphorylation of 
p39, whereas 6-cyano-7-nitroquinoxaline- 
2,3-done (CNQX), which blocks the non- 
NMDA type of glutamate receptors, had no 
detectable effect (Fig. 1B). Under condi- 
tions where both subtypes of glutamate 
receptors were blocked with sodium 
kynurenate and a high concentration of 
M 8 + ,  glutamate treatment failed to stimu- 
late tyrosine phosphorylation (Fig. 1B). 
These results demonstrate that NMDA re- 
ceptor activation is required for the gluta- 
mate-induced increase in p39 tyrosine 
phosphorylation. In addition, selective ac- 
tivation of the NMDA receptor with the 
synthetic agonist NMDA was sufficient to 
stimulate p39 tyrosine phosphorylation 
(Fig. 1C). 

A key function of the NMDA receptor is 
its ability to conduct Ca2+ ions (10). An 
influx of Ca2+ from the extracellular medi- 
um was required for glutamate-induced ty- 
rosine phosphorylation of p39 because ad- 
dition of 2 mM EGTA to the medium 
completely blocked the increase in p39 
phosphorylation (Fig. 2A). A possible route 
for Ca2+ entry other than through the 
NMDA receptor is through voltage-gated 
Ca2+-channels (1 1). However, treatment of 
hippocampal neurons with the N-type 
Ca2+-channel antagonist o-conotoxin or 
the dihydropyridine-sensitive Ca2+-chan- 
nel antagonist nifedipine independently, or 

Fig. 2. (A and B) Glutamate-induced p39 tyro- 
sine phosphorylation requires a transmembrane 
Ca2+ influx and is independent of the activation 
of voltage-sensitive Ca2+ channels. Anti-Ptyr im- 
munoblot analyses of unstimulated hippocampal 
cells (A, lane 1; B, lane l ) ,  cells stimulated for 3 
min with glutamate (A, lane 2; B, lane 2), cells 
stimulated for 3 min with glutamate in the pres- 
ence of 2 mM EGTA (A, lane 3), 4 p M  o-cono- 
toxin (B, lane 3), 5 p M  of nifedipine (B, lane 4), 
or 4 p M  o-conotoxin plus 5 p M  nifedipine (B, 
lane 5). Cells were treated with o-conotoxin or 
nifedipine for 10 min before glutamate stimula- 
tion. Cells were treated with EGTA for 5 min 
before glutamate stimulation. The arrows indicate 
p39. M, 14C-labeled protein molecular weight 
standards (X 

- 100 - 10 1W 1W M-a%, 
Fig. 3. Relation or identi- 

Mr (WI ty of p39 and MAP-2 ki- , - 
A -- U - w .  * 5  nase. (A) Immunoblot 

m- m e  + z  analysis of lysates from un- 
m stimulated hippocampal 

92 - 
Mr Ill cells (lanes 1, 3, and 5) or 

511 - from cells stimulated for 3 

aF: u- f * i += min with glutamate (lanes 
,- k- 29- - - 3  2, 4, and 6) using anti- 

u- s -. - C m -- Ptyr lanes 1 and 2), anti- \ 
p44M (lanes 3 and 4), or 

4 anti-GEGA (lanes 5 and 
29 - m 4-2 6). The arrow indicates 

a - X  p39. (B) Immunoblot 
1 2  3 4  5 6  analysis of peptides gener- 

, G O .  J u  ated by V8 protease cleav- 
age of p39 from unstimu- 

lated hippocampal cells (lanes 1 and 2) or from cells stimulated for 3 min with glutamate (lanes 3 to 5) 
using anti-Ptyr (top panel), a n ~ - p 4 4 ~ " ~  (middle panel), or anti-GEGA (bottom panel). Lane 6 
contains 100 ng V8 protease but no p39. The large arrow indicates p39; the small arrow indicates its 
30-kD V8 cleavage product. M,, 14C-labeled protein molecular weight standards ( X  

in combination, had no detectable effect 
on p39 tyrosine phosphorylation (Fig. 
2B). Therefore, it is likely that glutamate- 
stimulated Ca2+ influx via the NMDA 
receptor triggers p39 tyrosine phosphoryl- 
ation. 

We next determined the identity of p39. 
A serine-threonine kinase of approximately 
42 kD, microtubule-associated protein 2 
(MAP-2) kinase (also called extracellular 
signal regulated kinase) (12), becomes rap- 
idly phosphorylated on tyrosine in fibro- 
blasts and adipocytes upon growth factor 
stimulation and in chromfin cells in re- 
sponse to various secretagogues (13). The 
possibility that p39 from hippocampal cells 
is related or identical to MAP-2 kinase was 
examined by irnmunoblot analyses with two 
distinct rabbit polyclonal antibodies, anti- 
body to a peQMPK peptide sequence (anti- 
GEGA) (14), both of which recognize the 
mammalian MAP-2 kinase (15). When im- 

munoblots of extracts obtained from un- 
stimulated or glutamate-stimulated hippoc- 
ampal cells were probed with the antibodies 
that recognize the MAP-2 kinase, a protein 
that comigrated with p39 was detected (Fig. 
3A). On irnmunoblots, anti-peQMPK prefer- 
entially recognizes the tyrosine-phosphory- 
lated form of the fibroblast MAP3 kinase 
relative to the form that is not tyrosine- 
phosphorylated (15). We found that anti- 
peQMPK also recognized p39 from gluta- 
mate-stimulated hippocampal cells better 
than it recognized p39 from untreated cells 
(Fig. 3A, lanes 3 and 4). This is consistent 
with phosphorylation on tyrosine of the p39 
protein from stimulated hippocampal neu- 
rons and suggests that this protein is related 
to the MAP-2 kinase. To further establish 
the identity of p39, we compared the partial 
proteolysis pattern of p39 recognized by the 
antibody to phosphotyrosine to the pattern 
recognized by antibodies that bind MAP-2 

A B Fig. 4. Immunoprecipitation of 32P- 
4 . . ! analysis. (A) "*P-labeled p39 was im- 

labeled p39 and phosphoamino acid 

. . 
68 - munoprecipitated from lysates pre- 

pared from unstimulated (lanes 1 to 3) 
or glutamate-stimulated hippocampal 
neurons (lanes 4 to 6) using an anti- 

43 - .-• body to a peptide sequence from the - II c p 3 9  MAP-2 kinase (20). Labeling with 
["P]orthophosphate was carried out 
in the absence of glutamate receptor 

29 - blocker (lanes 1 and 4), or in the presence of 100 p,M APV 
(lanes 2 and 5), or in the presence of 40 p M  CNQX (lanes 3 and 
6). The MAP-2 kinase antibody also immunoprecipitated a 
43-kD protein (asterisk). The phosphorylation of the 43-kD 
protein was also inducible upon glutamate stimulation and 

2 3 5 6 occurred on tyrosine and threoninc residues and, to a lesser 
extent, on serine residues (8). On the basis of the size of the 

43-kD protein and of its interaction with the MAP-2 lunase antibody, it seems likely that this protein 
is another member of the MAP3 kinase family (12). M,, I4C-labeled protein molecular weight 
standards ( X  (0)  Phosphoamino acid analyses of 3ZP-labeled p39 immunoprecipitated from 
glumate-stimulated hippocarnpal neurons [corresponding to lane 4 in (A)]. S, phosphoserine; T, 
phosphothreonine; Y, phosphoryrosine. The p39 from unstimulated hippocarnpal neurons [corre- 
spondng to lanes 1 to 3 in (A)] also contained phosphotyrosine and phosphothreonine, but to a lesser 
degree than did stimulated hippocampal neurons (8). 
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kinase. SDS gel slices containing p39 from 
unstimulated- and stimulated h~~pocampal 
cells were subjected to partial proteolytic 
digest with V8 protease (16), and the result- 
ing peptides were analyzed by immunoblot- 
ting (17). If p39 and the W - 2  kinase are 
related or identical proteins, one might ex- 
pect that V8 cleavage products, recognized 
by the antibody to phosphotyrosine, would 
also be recognized by anti-p44MPK and anti- 
GEGA. We found that partial proteolytic 
digests of p39 from glutamate-stimulated 
cells gave rise to a peptide of about 30 kD, 
which was detected by the antibody to phos- 
photyrosine, anti-p44MPK, and anti-GEGA 
(Fig. 3B, lanes 3 to 5). A second proteolytic 
fragment of about 28 kD was recognized by 
each of the three antibodies and became 
detectable after prolonged exposure of the 
immunoblots. Anti-GEGA, which recogniz- 
es the tyrosine-phosphorylated and unphos- 
phorylated forms of p39 equally well (Fig. 
3A, lanes 5 and 6), also bound to p39 and 
the 30-kD cleavage product from unstimu- 
lated cells, whereas these antigens reacted 
poorly with the antibody to phosphoty- 
rosine and anti-p44MPK (Fig. 3B, lanes 1 
and 2). Taken together, these peptide-map- 
ping experiments indicate that p39 is related 
or identical to MAP-2 kinase. 

We next investigated if glutamate-induced 
phosphorylation of p39 plays a role in the 
activation of this kinase. Phosphorylation of 
both tyrosine and threonine residues is re- 
quired for the induction of W - 2  kinase 
activity (18). To determine if glutamate 
stimulation induces phosphorylation of p39 
on both tyrosine and threonine residues, 
hippocam& neurons were labeled with 
32P-labeled orthophosphate (19) and p39 
was immunoprecipitated with an antibody 
to the MAP-2 kinase (20). This experiment 
confirmed that the phosphorylatio~ of p39 
is induced by glutamate in an NMDA recep- 
tor-specific manner (Fig. 4A). Phosphoam- 
ino acid analyses (21) revealed that p39 was 
phosphorylated on both tyrosine and threo- 
nine residues (Fig. 4B), suggesting that its 
kinase activity is induced upon NMDA re- 
ceptor activation. Direct measurements of 
MAP-2 kinase activity in crude cell extracts, 
with W - 2  protein and myelin basic pro- 
tein used as substrates, showed that the 
kinase activity in hippocampal neurons in- 
creases after glutamate stimulation (8). The 
glutamate induction of MAP-2 kinase activ- 
ity was dependent on activation of the 
NMDA receptor (8). 

Taken together, these findings suggest 
that the NMDA receptor signal is propagat- 

ed as a protein kinase cascade, whereby 
Ca2+ influx leads to the activation of a 
tyrosine kinase, which in turn activates a 
serine-threonine kinase. Further experi- 
ments are required to identify the tyrosine 
kinase that couples the NMDA receptor to 
tyrosine phosphorylation of p39 and to in- 
vestigate the importance of this protein ki- 
nase cascade for neuronal plasticity. 
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