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Alteration of the Phase and Period of a Circadian produced delay phase shifts of 1.8 5 0.2 
hours (n = 4) and 4.4 ? 0.4 hours (tz = 4), Oscillator by a Reversible Transcription Inhibitor respectively. TO examine the sensitivity of 

A function for transcription in the mechanism of a circadian oscillator was investigated 
with the reversible transcription inhibitor 5,6-dichloro-l-p-D-ribobenzimidazole 
(DRB). Two-hour treatments with DRB shifted the phase of the circadian rhythm of 
the isolated eye of Aplysia, and continuous treatments of DRB lengthened the free 
running period of this rhythm. Camptothecin, an inhibitor of transcription that is 
structurally unrelated to DRB, had similar effects on the circadian rhythm. These 
results suggest that transcription may be part of the circadian oscillating mechanism. 

A REMARKABLE PROPERTY OF CELLS 

is their ability to generate endoge- 
nous rhythms with periods close to 

24 hours. For example, a small piece of a 
pineal organ exhibits a circadian rhythm of 
melatonin secretion (1). Elucidation of the 
oscillator mechanism responsible for such 
rhythms requires identification of its com- 
ponents and determination of the regulatory 
processes by which these components inter- 
act. 

Progress is being made in the identifica- 
tion of putative components of circadian 
oscillators. Researchers have identified a 
number of proteins by tracing environmen- 
tal entrainment information to the oscillator 
(Z), by tracing output pathways back to the 
oscillator (3), and by looking for proteins 
that are rhythrmcally synthesized (4). More- 
over, genes that alter circadian rhythms have 
been identified (5 ) .  Some candidates for the 
cellular regulatory processes that link the puta- 
tive oscillator components are protein phos- 
phorylation (6, 7), Ca2+ regulation (7, E ) ,  and 
protein synthesis (9). Protein synthesis is the 
most widely implicated regulatory process. For 
example, several inhibitors of protein synthesis 
shift the phase and change the period of the 
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circadian rhythm associated with the isolated 
eye of Aplysia (10, 11). Furthermore, inhibi- 
tors of protein synthesis block some effects of 
entraining agents on the Aplysia eye rhythm 
(2).  These entraining agents also change the 
synthesis of a number of eye proteins (2). 
Experimental results that implicate translation 
are also consistent with the pamcipation of 
transcription in the circadian oscillator mecha- 
nism. 

The results of a number of recent studies 
indicate that changes in transcription regu- 
late circadian rhythms (12). In addition, 
transcription inhibitors abolish circadian 
rhythms, but these findings were difficult to 
interpret because irreversible transcription 
inhibitors were used in these experiments 
(13). We have investigated the effects of a 
reversible inhibitor of transcription, 5,6- 
dichloro-l-P-D-ribobenzimidazole (DRB), 
on the circadian rhythm of spontaneous 
nerve impulses from the isolated eye of 
Aplysia. DRB inhibits the synthesis of het- 
erogeneous nuclear RNA at the level of 
transcription initiation by interfering with 
the RNA polymerase I1 function (14). 

Isolated Aplysia eyes were treated with 
DRB for 2 hours during circadian time 
(CT) 06 to 08 hours, and a dose-dependent 
shift in the phase of the circadian rhythm 
was observed (15) (Fig. 1A). Treatment 
with DRB at M did not produce phase 
shifts, whereas lop6 M and lo-' M DRB 

the rhythm to DRB throughout a circadian 
cycle, we generated a phase response c u m  
(PRC) by treating isolated eyes with DRR 
( lop4  M) for 2 hours at different phases of 
the rhvthm. The effects of DRB on the 
rhythm were phase-dependent (Fig. 1B).  

-1 2 3 4 5  
Time in darkness (days) 

B 

20 0 4 8 12 16 20 

Circadian time (hours) 

Fig. 1. Effect of  D R B  o n  the phase o f  the ocular 
circadian rhythm. (A) A delay shift in the phase of  the 
rhythm was produced by a 2-hour treatment with 
DRB M) during CT 0 6  t o  0 8  hours, shown 
by the dark bar under the x asis (dashed h e ,  control; 
solid line, DRR). The frequency of  spontaneous 
optic nen'e unpulses from two isolated eyes of the 
same animal is plotted as a function of  the time the 
eyes were in constant darkness. (B) P h a e  sI& of  the 
rhythnl are plotted as a function of the time of 
exposure of  isolated eyes t o  DRB (closed circles). 
The error bars represent SEMs. The  number of eyes 
exposed at M e r e n t  phases t o  D R B  were the follow- 
ing: six (CT 18 to  20), five (CT 2 0  t o  22), four (CT 
2 2  to  24), four (CT 0 2  to 04), four (CT 06 t o  08), 
four (m 10  t o  12), four (CT 14 to 16). five (CT 1 8  
to  20, second cycle), and four ( C T  2 0  t o  22, second 
cycle). Data for the phase s h h  of  the rhythm 
produced by l-hour CHX treatments (open circles) 
were derived from ( 1  1) .  
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Treatments with DRB for 2 hours produced 
delay phase shifts when administered over 
the in tend  CT 20 to 12 hours but had no 
effect on the rh?.thm when given over the 
intenal CT 12 to 20 hours. The lack of an 
effect of DRB at some phases of the rhythm 
was not a result of a differential inhibition of 
transcription. Treatment with DRB inhibit- 
ed total RNA synthesis 111 the eye as measured 
by its effect on the incorporation of ["Iuri- 
dule into trichloroacetic acid (TCA)-precipita- 
ble material (16). Treatment with DRB (lo- '  
M) had similar e f fec~  on the incorporation of 
[3~]uridu1e when DRB produced phae  shifts 
(CT 02 to 04 hours, 72 ? 3% inhibition, n = 

4) m d  when it did not produce phase shifts 
(CT 14 to 16 hours, 75 ? 3% ithibition, n = 

4).  The frequenc~ of spontaneous nen7e im- 
pulses \VJS inhibited 56 ? 5% (tt = 21 ) during 
cxposurc to 10 ' M DRB but not during 
exposure to 10-% DRR (9 ? 11%, n = 5). 

The effect of different concentrations of 
DRB on ["Iuridine incorporation was 
correlated with the effect of DRB on  the 
rhythm. Treatment with DRB inhibited in- 
corporation by 72 ? 3% at M, 40 ? 

4% at lo-", and 10 ? 2% at lo-" M .  
Because DRB is reported to  affect only 
KNA polymerase 11, it should inhibit only 
mRNA synthesis (14). Thus, the magni- 
nldes of inhibition by DRB that we ob- 
senred probably underestimate its effect on 
mRNA synthesis because we only assessed 
its effects on total RNA synthesis. Incor- 
poration of ["Iuridine increased to 7 7  ? 

7% (11 = 4)  and 99  4% (tl = 3 )  of 
control \~alues 3 and 5 hours after removal 
of L)RB ( l o 4  M),  respectively. Treatment 
with DKB appeared to have no effect on 
translation as measured by [%]leucine in- 
corporation during 2-hour DRB treat- 
ments (1 7) .  

We next tested the effect of continuous treat- 
ments of DRB on the ocular circadan rhythm. 
Gjndnuous exposure of L4plysk eyes to  DRB 
at lo-' M had no effect on the period of the 
rhythm (0.2 ? 0.1 hour, t t  = 4), but DRB at 

M lengthened the period of the rhythm 
by 1.6 2 0.1 hours (n = 4) (Fig. 2A) (18). A 
higher dose of DRB (10- "M) further length- 
ened the period of the rhythm (8.0 ? 0.7 
hours, n = 5) (Fig. 2B). Exposure to 5 x lo-" 
M D M  appeared to abolish the rhythm 
after one broad cycle (Fig. 2C). The eyes 
with no apparent rhythms produced spon- 
taneous spikes with normal amplitudes, 
but the frequency of these spikes was great- 
ly reduced. 

To  test whether the effect of DRR on  the 
rhythm was a result of its inhibition of 
transcription and not a nonspecific effect, we 
esplored the effects of camptothecin, a tran- 
scription inhibitor that functions by inhib- 
iting topoisomerase I ( 19). Camptothecin, 

like DRB, inhibited [3H]uridine incorpo- 
ration and produced delay phase shifts in the 
rhythm (20). Continuous treatment of eyes 
with camptothecin (2  x M )  produced 
a small but significant lengthening of the 
period of the rhythm (0.50 + 0.05 hour, tz 

= 7). The effects of camptothecin on the 
rhythm were apparent over a very narrow 
range of doses and appeared to be more 
variable than those produced by DRB. For 
example, pulse treatments of 4 x lop7  M 
camptothecin shifted the phase of the 
rhythm, but 2 x l op7  M camptothecin 
appeared to have no effect. 

Our results indicate that DRB acts on the 
ocular circadian rhythm tlrough a primary 
effect on traxcription. One can examine the 
temporal relation between the sensitivity of the 
circahan system to mhibitors of translation m d  
transcription by comparing a PRC obtained 
with 1 -hour treatments ofAplysk eyes with the 
translation inhibitor qcloheximide (CHX) 
(1 1) and with the PRC reported here for DRB 
(Fig. 1B). The beginning of the intervals of 
sensitivity to DRB (CT 20 to 22 hours) and 
CHX (CT 20 to 21  hours) appear to coincide. 

The close temporal relation between the PRCs 
for DRB and CHX indicates that the effec'ts of 
transcription and translation are Linked. A- 
t h o q h  the [3H]leucine incorporation was not 
aEected during DRB treatment (17),  we found 
that the synthesis of at least five specific pro- 
teins was altered duuing 2-hour DRB treat- 
ments (21). Fulrther support for a close cou- 
pling of transcription and translation in 
regulation of the rhythm comes from the ap- 
pearance of phase shifts in the rhythm within a 
few hours after the end of 2-hour treatments 
with DRB (Fig. 1A). Therefore, IIRB most 
likely alters the rhythm by a primary effect on 
traxcription and a subsequent s e c o n d q  effect 
on translation. 

Our results indicate that a critical period 
for the transcription of specific genes in- 
volved in the generation of circadian 
rhythms occurs from C T  20 to 10 hours. 
Alternative functions of transcription in the 
circadian system are also consistent with our 
data. For example, transcription and trans- 
lation may be necessary to  maintain the 
supply of a protein component of the oscil- 
lator with activity that is rhythmically regu- 
lated in some way other than at the level of 
transcription or translation. 1)istinguishing 
between the alternative possibilities requires 
the identification and study of the relevant 
mRNAs and proteins. Although we have not 
defined the precise role of trar~scription and 
tramlation, our results demonstrate that at least 
one short-lixd rnRNA and protein are impor- 
tant for circadian timing over a puticxdar time 
interval. Idendcation of specific proteins that 
are decreased by brief DKK treatments in the 
intend from CI 20 to 10 hows and nlKNAs 
that are newly transcribed around CT 20 hours 
may help elucidate the nature of the circadian 
oscillator. 
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Concurrent Processing and Complexity of Temporally 
Encoded Neuronal Messages in Visual Perception 

The intrinsic neuronal code that carries visual information and the perceptual 
mechanism for decoding that information are not known. However, multivariate 
statistics and information theory show that neurons in four visual areas simultaneously 
carry multiple, stimulus-related messages by utilizing multiplexed temporal codes. The 
complexity of these temporal messages increases progressively across the visual system, 
yet the temporal codes overlap in time. Thus, visual perception may depend on the 
concurrent processing of  multiplexed temporal messages from all visual areas. 

T H E  hBILI1  Y OF MONKEYS TO KkC0C;- 

nize pictures depends on a large 
number of cortical and subcortical 

brain regions ( 2 ) .  T o  understand how neu- 
rons within these regions contribute to vi- 
sual perception, we must learn what codes 
they use to transmit information. Despite 
many years of studying visual neurons, re- 
searchers have failed to define this intrinsic 
code. In the classical hypothesis, neurons 
encode information about images only in 
the number of action potentials (spikes) in 
their responses by using a mean firing rate or 
strength code (2). However, neurons in four 
brain regions spanning the visual system in 
the monkey also carry information about 
images in the distribution of spikes within 
the response (3, 4, 5 ) .  This temporal code is 
two to three times more efficient than the 
strength code in representing visual infor- 
mation. Furthermore, the proportion of the 
information carried by the temporal modu- 
lation increases in regions more distant from 
the retina. These findings show that tempo- 
ral modulation that is dependent on the 
stimulus is a common neuronal mechanism, 
and we hypothesize that it may be important 
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for visual perception. 
We recorded elcctrophysiologically from 

the following: ganglion cell fibers (RET), 
which carry visual infbrrnation o ~ ~ t  of' the 
retina; neurons in the parvocellular division 
of the lateral geniculatc nucleus I LGN), 
which receive input from the rctir~a and 
which project to the prirnay visual cortex 
( V l ) ;  complex cells in layer\ two and three 
of V1, which receive input fiom layer four 
of V 1  and project to later visual areas; and 
neurons in the inferior temporal cortex (IT), 
which receive input from earlier visual areas 
and project beyond the visual sytern to the 
limbic system (6).  Awake monkeys were 
trained to fixate on a small spot nvhile stirnu11 
were presented on a video mo~iitor.  The 
stimuli used in these experiments (Fig. 1 )  
consisted of a complete set of two-dirncn- 
sional black-and-white picture\ based on 
Walsh filnctions (7). Neuronal responses 
were quantified by the Karhuncn-Lotve 
transform (KLT),  which is similar in princi- 
ple to  a Fourier transform but docs tiot use 
sine waves as its basis. Instead, the basis of 
the KLT is a set of waves of excitation and 
inhibition, called principal components 
(Fig. 2, 4,) through h,), that mu\t be com- 
puted separately for each neuron. Because 
no principal component can be reprccnted 
by a sum of the others, each can be intcr- 
preted as a separate element in a temporal 
code. 




