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Visual Motion Commands for Pursuit Eye 
Movements in the Cerebellum 

Eye movements that follow a target (pursuit eye movements) facilitate high acuity 
visual perception of moving targets by transforming visual motion inputs into motor 
commands that match eye motion to target motion. The performance of pursuit eye 
movements requires the cerebellar flocculus, which processes both visual motion and 
oculomotor signals. Electrophysiological recordings &om floccular Purkinje cells have 
allowed the identification of their firing patterns during generation of the image 
velocity and image acceleration signals used for pursuit. Analysis with a method based 
on a behavioral model converted the time-varying spike trains of floccular Purkinje 
cells into a description of the firing rate contributed by three visual motion signals and 
one oculomotor input. The flocculus encodes all the signals needed to guide pursuit. 

ANY PRIMATE BEHAVIORS ARE 

guided by vision. Although much 
is known about the sensory pro- 

cessing of visual inputs, little is known about 
the sensory-motor transformations that con- 
vert central visual signals into commands for 
voluntary movements. Pursuit eye move- 
ments provide an opportunity to understand 
this sensory-motor transformation. Pursuit 
allows primates to use visual inputs related 
to image motion, defined as target motion 
with respect to the eye, to drive smooth eye 
movements that keep the eyes pointed at 
small moving targets. Previous experiments 
have led to the delineation of the brain areas 
that process moving images and the basic 
anatomical pathways that connect visual 
motion areas in the extrastriate cortex to the 
extraocular nuclei (1). In addition, our lab- 
oratory has developed a quantitative de- 
scription of how visual motion signals are 
transformed to generate eye velocity (2). 
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The next step is to determine how those 
signals are represented in the pursuit path- 
ways: 

Our experiments focus on the cerebellar 
flocculus, which is necessary for accurate 
pursuit (3) and is located at the interface 
between the visual and oculomotor path- 
ways that generate pursuit eye movements. 
Visual inputs to the flocculus arise from at 
least the pontine nuclei and the nucleus 
reticularis tegmenti pontis, whereas inputs 
related to eye movements arise from the 
vestibular nuclei and the nucleus prepositus 
(4). Both the visual and oculomotor inputs 
are reflected in the simple-spike activity of 
floccular Purkinje cells (P cells), the output 
neurons of the cerebellum (5) .  In turn, 
neural activity of floccular P cells causes 
smooth eye movements within 10 ms by 
inhibiting the vestibular interneurons in the 
brainstem that project directly to extraocular 
motoneurons (6) .  

Our goal was to go beyond the previous 
demonstration of visual simple-spike re- 
sponses in floccular P cells and provide a 
description of how properties of the visual 
inputs are related to features of pursuit. The 
design of our experiments was based on 

behavioral studies in monkeys, which sug- 
gested that three diffekent visual signals pro- 
vide the commands for smooth eye acceler- 
ation (2, 7). These signals are related to 
image velocity, the abrupt onset of image 
motion (image motion transient), and 
smooth changes in image velocity (image 
acceleration). Models of pursuit that include 
a sensitivity to all three visual signals have 
emergent properties that replicate several 
distinctive features of pursuit (8). 

Figure 1 illustrates three target motions 
that can help dissect the visual inputs for 
pursuit into its three separate components. 
When the target is initially stationary and 
begins to move at a constant speed (Fig. 
lA), all three components are available to 
contribute to pursuit. The image motion 
transient component, defined as the first 
derivative of image velocity for abrupt 
changes in target motion, makes a momen- 
tary contribution at the onset of target mo- 
tion. The image velocity component pro- 
vides an initial steady input that decreases 
toward zero as eye velocity increases toward 
target velocity. The image acceleration com- 
ponent, defined as the first derivative of 
image velocity for smooth changes in target 
motion, contributes after image velocity be- 
gins to decrease; this component acts in the 
direction opposite that of im$ge velocity, 
braking eye velocity as it approaches -the 
target velocity. When the target appears on 
the screen already moving (Fig. lB), the 
image motion transient component does not 
contribute, and as a result the rising phase of 
eye velocity is less brisk. This target motion 
provides image velocity and image accelera- 
tion inputs that are qualitatively similar to 
those in Fig. 1A. When a target starts from 
rest and accelerates smoothly to a steady 
target velocity (Fig. lC),  the image velocity 
and image acceleration pathways contribute 
synergistically, and the image motion tran- 
sient is not activated. The accelerating target 
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Fig. 1. Target nlotions used to dis- 
sociate visual motion and oculomo- A B C 
tor signals used for pursuit. Each 
column shows one type of target 
motion. The different target mo- xE 

tions produced different combina- 

/ / 1 B  
tions of eye velocity and three visual 
motion signals. T and 3 are target J J  ,.,,--___. J ----  - iJTF .--- ---- I 
and eye position; T, E, and I,,are I 
target, eye, and image velocity; I' is $ ___..___------- --------------- 
image motion transient; I is image 
acceleration; FR is P cell firing rate. .. .-\ 

b ,  b ,  

,--- --- 
1 

In each case, the monkey initially I ----, - ----- 1, ,-.a, 
, 8 - . - - - - .  n 

1 I 
\ I 

I I I.: , ,I fixated a central spot (not shown) ( I 
$ 8  

until an eccentric target (0.5" white 
spot) began to move. (A) The tar- 
get was visible and stationary for FR 
300 to 500 ms at an eccentric po- 
sition before it moved at a constant 

&- * 
I 4Wms I velocity. This variation of the step- 

ramp paradigm introduced by 
Rashbass (16) produces all three signals contained in our behavioral model: image velocity, an image 
motion transient, and image acceleration. (B) The target moved at a constant velocity but was not 
visible before the onset of its motion. The temporal coincidence of the target's appearance and its 
motion eliminates the motion transient signal present in (A). (C) The target accelerated smoothly from 
rest before achieving a constant velocity. The bottom row in each column shows the average firing rate 
recorded from a single P cell while a monkey performed these trials. The dashed line indicates the 
baseline firing rate of 90 spikes per second. These trials are samples from a set of target motions that 
consisted of constant velocity (5, 10,20, and 30 degis) and accelerating targets (45, 80, 120, and 180 
deg/s2) moving in both the preferred and the nonpreferred directions. Measured variables (firing rate, 
target and eye position, and velocity) are shown as solid lines, whereas derived variables (image velocity, 
image motion transient, and image acceleration) are shown as dashed lines. 

& P-cell firing rate 

D E 

causes eye velocity to increase more briskly 
than would be predicted by the contribution 
of the image velocity pathway alone (7). 

We recorded the simple-spike firing rate 
of single floccular P cells as monkeys with 
their heads restrained tracked constant ve- 
locity and smoothly accelerating targets such 
as those depicted in Fig. 1 (9). Inspection of 
the firing rate of the P cells during tracking 
of different target motions revealed that the 
firing pattern depended critically on which 
target motion was tracked. For example, the 
P cell in the bottom row of Fig. 1 showed a 
modest and sustained response when a tar- 
get that moved at a constant v9ocity of 5 
deg/s appeared (Fig. 1B). The same cell 
showed a larger and briefer response when a 
target moving at the same velocity started 
from rest (Fig. 1A) and a large and sustained 
response when the , target accelerated 
smoothly at 180 deg/s2 (Fig. 1C). The dif- 
ferences in firing rate reflect the differences 
in the visual and oculomotor signals associ- 
ated with each target motion. However, the 
contribution of each input to the activity of 
the P cell could not be measured simply 
from the firing rate recorded during tracking 
of each target motion, because the visual 
motion and eye velocity signals varied con- 

Fig. 2. (A) Distributed network model used to 
analyze P cell data. (B) Enlarged view of one 
network. Input signals activated tuned units (hor- 
izontal row of circles) that had log-Gaussian 
input-output functions. The Gaussian curves un- 
der the tuned units show how the output of each 
unit was related to input amplitude. Each network 
contained 16 tuned units, eight for positive and 
eight (not shown) for negative values of the input 
signal. Peaks of tuned units were located at fixed 
intervals on a log scale. The axis had units of 
either degrees per second or degrees per second 
squared, depending on the network. Peaks of 
extreme tuned units were located at 60 de& for 
image velocity, image motion transient, and eye 
velocity, and 500 deg/s2 for image acceleration. 
The output of each filter unit (vertical row of 
circles) was delayed by a different amount of time 
(0 to 35 ms, indicated in boxes) and projected to 
a single output unit in the network. The three 
visual signal inputs were each delayed by 65 ms to 
account for the temporal offset in the contribution 
of visual motion inputs. (C through G) Sample fit 
of model to P cell firing rate profile. Traces are o f k t  
for clarity. The bottom four traces show the activity 
of output units in each of the four netwqrEbefore 
being summed at the final unit. (C) shows the firing 
rate obtained during pursuit of a 5 deds target 
motion with no motion transient signal, like the 
target motion shown in Fig. 1B. (D) and (E) show 
firing rates obtained during pursuit of targets moving 
at 5 and 30 deg/s with a motion transient signal, as 
shown in Fig. 1A. (F) and (G) show firing rates for 
targets accelerating at 80 and 180 deg/s2, like those 
shown in Fig. 1C. The SEs of the estimate provided 
by the model when compared to the finng rates 
shown in (C) through (G) were 7.876,7.267,7.602, 
7.582, and 9.572, respectively. Much of this error is 
due to noise caused by the irregularity of P cell firing 
rate. 
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model used the four input signals to account 
for P cell firing rate. The traces represent the 
activity of the output units from the four 

relative contribution of each input signal. 
-50 .- For this P cell the output from the image .- velocity network contributed much of the 

-30 0 30 -30 0 30 response during tracking of each target mo- - i (degls) ' (deg's) tion. The network for the image motion 
transient accounted for the different re- 
sponses to target motions with (Fig. 2, D 
and E) and without (Fig. 2C) a motion 
transient. The image acceleration signal 

.- made a large positive contribution to the .- 
LL 

-1 00 
model's output for smoothly accelerating 

-300 .. o 300 -30 o 30 targets (Fig. 2, F and G) and had a small 
I (degls2) E (degls) inhibitory effect on the response to constant 

Fig. 3. Graphs relating firing rate to the ampli- velocity targets (Fig. 2, D and E). As in the 
tude of each input signal for the same P cell behavioral data in Fig. 1, this inhibitory 
shown in Fig. 2. effect was delayed and slowed the firing rate. 

Once tracking was accurate and image ve- 
tinuously as a function of time. It was locity and acceleration were small, most of 
therefore necessary to convert the time-vary- the steady-state output of the model was 
ing averages of firing rate into a format that attributed to eye velocity. 
directly described the contribution of each We next determined the signal processing 
input. We accomplished this transformation attributed to each P cell by analyzing the 
by first fitting the firing rate of each P cell four networks separately to obtain graphs 
with a separate copy of a model based on relating firing rate to the amplitude of each 
our behavioral analysis and then analyzing input signal. For example, the four graphs in 
the properties of the models with the best Fig. 3 represent the nonlinear transforma- 
fit. tipns performed by the four networks used 

The model used for data analysis consisted to fit the P cell firing rate in Fig. 2, C 
of four networks, each of which processed through G. We obtained the function plot- 
one input: image velocity, image motion ted in each graph by providing input steps 
transient, image acceleration, or eye velocity of different amplitudes to one of the four 
(Fig. 2A). The outputs of the four networks networks and measuring the activity of the 
were summed to produce a simulated P cell output unit from that network 400 ms after 
firing rate. Each network consisted of inter- the onset of the step. The model that pro- 
connected units within a structure designed vided the best fit to the firing rate of this P 
so that gradient descent adjustment of the cell showed large saturating responses to 
weights (10) assigned to each connection image velocity and eye velocity, a large 
could optimize how the input signals were tuned response to the motion transient, and 
scaled and filtered (Fig. 2B). Each "tuned" 
unit was activated by a different range of 
input values and produced an output that , 150 A 
was a Gaussian function of its input. Filter $ 
units had different delays in their output loo 
lines. Adjusting the weights of the connec- 3 
tions between tuned units and filter units f 

, , , 1.; , A, , 

allowed the model to customize the relation 50 od 

A 0  A A o  fn 

between the amplitude of each input signal 
and P cell firing rate. Adjusting the connec- o $ 0 2 ,  A 

tions between filter units and the output o  5 0 1 0 0  o 5 0 1 0 0  

unit of each network allowed the model to Firing rate (spikesls) 

modify the temporal shape of each signal Fig. 4. Relative strengths of the diEerent visual 
(1 1). The top two rows of traces in Fig. 2, C signals for the sample of P cells. (A) F'eak firing 
through G, show that the output of the rate due to the motion transient signal plotted as 

a function of that due to the image acceleration 
(dashed lines) (I2) was signal. (B) Modulation due to the motion tran- 

similar to the actual firing rate for a selection sient signal plotted as a function of that due to the 
of target motions from one P cell (solid image velocity signal. Circles and triangles repre- 
lines), similar fits were obtained with the sent data from two Merent monkeys. The cells in 

other 35 P cells in our sample (13). the two monkeys showed a simdar distribution of 
visual motion inputs except that the P cells with a 

The bottom four rows of traces in Fig. 2, very high sensitivity to image velocity were sam- 
C through G, show one example of how the pled only in one monkey. 

a more modest saturating response to image 
acceleration (1 4). 

Figure 4 shows the relative strengths of 
the different visual signals in our s m i l e  of P 
cells from two monkeys. For each P cell we 
measured the peak excitatory change in fir- 
ing rate attributed to the three visual signals 
from graphs like those in Fig. 3. The broad 
distribution of response amplitudes shown 
in Fig. 4 indicates that the three visual 
motion signals were represented as a contin- 
uum in the population of P cells. In addi- 
tion, plotting the peak firing rate attributed 
to the motion transient against that due to 
image acceleration revealed that .P cells sen- 
sitive to one also tended to be sensitive to 
the other (Fig. 4A). However, there was no 
obvious relation between the peak firing rate 
due to the motion transient and that due to 
image velocity (Fig. 4B). These results sug- 
gest that the image acceleration and image 
motion transient signals represent a single 
component of the visual processing for pur- 
suit, whereas velocity signals represent a 
separate component. 

Our analysis of P cell firing describes how 
the.cerebellar flocculus converts visual mo- 
tion signals into commands for pursuit eye 
movements. It accounts for P cell firing 
under natural conditions in which the mon- 
key generates pursuit eye velocity and sen- 
sory feedback is changing continuously. The 
model we used in our analysis is not the only 
way to fit the neural data, but the model's 
basis in behavioral observations on pursuit 
eye movements provides an appropriate 
starting point for localizing the neural rep- 
resentation of the signals used for pursuit. 
Our success in fitting the firing rate of 
floccular P cells with the same class of model 
that accounts for the details of pursuit eye 
velocity demonstrates that the output of the 
flocculus encodes all of the visual motion 
and oculomotor signals needed for pursuit. 

The identification of functionally defined 
signals in floccular P cells is a first step 
toward quantifying the transformations ac- 
complished by the neural substrates for pur- 
suit.-~ecause- the anatomical pathwavy for 
pursuit are part of a corticopontocerebellar 
projection system that is imgortant for the 
generation of many other movemeiits (15), 
study of the sensory motor processing un- 
derlying pursuit eye movements is likely to 
provide insights into the neural control of 
more complex visually guided behaviors. 
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