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Protein Kinase Activity Closely Associated with a 
Reconstituted Calcium- Activated Potassium Channel 

Modulation of the activity of potassium and other ion channels is an essential feature 
of nervous system function. The open probabiity of a large conductance Ca2+- 
activated K+ channel &om rat brain, incorporated into planar lipid bilayers, is 
increased by the addition of adenosine triphosphate (ATP) to the cytoplasmic side of 
the channel. This modulation takes place without the addition of protein kinase, 
requires Mg2+, and is mimicked by an ATP analog that serves as a substrate for protein 
kinases but not by a nonhydrolyzable ATP analog. Addition of protein phosphatase 1 
reverses the modulation by MgATP. Thus, there may be an endogenous protein kinase 
activity firmly associated with this K+ channel. Some ion channels may exist in a 
complex that contains regulatory protein kinases and phosphatases. 

M ODULATION OF NEURONAL A W -  

ity underlies many changes in be- 
havior. Such modulation often re- 

sults from changes in the activity of membrane 
ion channels. Ca2+-activated K+ channels, one 
subclass of the diverse and widespread family of 
K+ channels, are intriguing in this regard be- 
cause they provide a link between second mes- 
senger s$siems and the membrane potential. 
some members of this channel subdass are 
targets for protein phosphorylation, a well- 
investigated modulatory mechanism for ion 
h e l s  (1). ~denosi& 3',5 '-monophosphate 
(cAMP)-dependent protein kinase (PKA) (2) 
and protein kinase C (PKC) (3) both change 
the activitv of Caz+-activated K+ channels in a 
number of tissues. 

We have described the properties of sev- 
eral different tvoes of Ca2+-activated K+ 

2 1  

channels from rat brain incorporated into 
planar lipid bilayers (4). Addition of the 
purified catalytic subunits of PKA and pro- 
tein phosphatase 2A (PP-2A) can modulate 
the gating of- two different types of large- 
conductance Caz+-activated K+ channels 
from brain (5 ) .  These two channel types 
have the same unitary conductance ( 2 4 0 h ~  
in symmetrical 150 mM K+) but differ in 
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their gating kinetics, Ca2+ sensitivity, phar- 
macology, and response to phosphorylation 
by PKA. We have now investigated the 
modulation by MgATP of the slower gating 
(4-6) of these large-conductance Caz+-acti- 
vated K+ channels. 

We recorded single-channel activity for 
such a channel under conditions in whlch 
the open probability was low (Fig. 1A). 
When 0.5 mM ATP was added to the 
cytoplasmic side of the channel, the open 
probability increased substantially (Fig. 1B). 
With some channels, as little as 50 pM ATP 
was enough to produce similar increases in 
open probability. In 25 separate experi- 
ments, 16 channels exhibited a large increase 
in open probability after the addition of 
ATP, whereas in 9 experiments ATP was 
without effect. From among the 16 ATP- 
modulated channels, we chose for quantita- 
tive analysis 6 representative channels in 
which the starting open probabilities were 
similar. ATP increased the maximal open 
probability of these channels from 0.058 & 

0.013 (mean 2 SEM) to 0.449 2 0.161. 
ATP added to the extracellular side of the 
bilayer did not alter channel activity. 

We next examined the time dependence of 
the open probability changes induced by 
ATP (Fig. 2A). In 16 experiments the lag 
time between the addition of ATP and the 
increase in open probability varied from 
channel to channel and ranged from less 
than 20 s to as long as 3 min. The open 
probability of the channel after the addition 

of ATP was not constant but osdated be- 
tween lower and higher open probability val- 
ues (Fig. 2, A and B). In the absence of ATP, 
we never observed these rapid, large changes in 
channel open probability (Fig. 2C). 

Magnesium was required for the modula- 
tion by ATP. When buffer containing 1 mM 
M$+ was replaced with M$+-free solution 
containing 20 p A i  EDTA, 1 mM ATP was no 
longer able to increase channel activity 
(n = 5). To examine whether ATP hydrolysis 
was necessary for the modulation, we tested 
analogs of ATP. In eight independent experi- 
ments, we observed no increase in the open 
probability in the presence of up to-1 mM of 
the nonhydrolyzabe ATP analog, AMPPNP 
(adenylylimidodiphosphate). In contrast to 
AMPPNP, ATPyS [adenosine-5'-0-(3-thio- 
triphosphate)], a hydrolyzable ATP analog that 
can substitute for ATP in most kinase reactions 
(7), increased the activity of the Ca2+-activated 
K+ channel in 12 of 14 experiments (Fig. 3). 
Quantitative analysis of four representative ex- 
periments, with similar initial open probabili- 
ties, revealed a greater than tenfold increase in 
channel open probability in response to ATPyS 
(from 0.060 & 0.009 to 0.667 2 0.083). 
ATPyS generally took longer to modulate the 
channel than ATP, consistent with reports 
that it is used at slower rates in phospho- 
transferase reactions (7). Furthermore, 
ATPyS induced a more stable, high open 
probability state (Fig. 3) than did ATP 
(Fig. 2, A and B). 

These results with ATP analogs demon- 
strated that ATP hydrolysis is required for 
channel modulation. This is different from 
the ATP-sensitive channels found in a vari- 
ety of tissues, in which ATP functions as a 
ligand to alter channel properties by binding 

A Control 

I m *.* 

B ATP 

Fig. 1. Activation of a large-conductance Ca2+- 
activated K+ channel in lipid bilayers by MgATP and 
reversal by PP-1. Voltage across the bilayer was 
damped at + 10 mV, and the reversal potential for 
K+ was set to -28 mV. For all traces, channel 
openings are shown as upward deflections from the 
dosed-level current. (A) Representative control 
openings of the channel before the addition of ATP 
in three continuous traces. (B) Traces 3 rnin after the 
addition of 0.5 mM ATP (Calbiochem) to the cyto- 
plasmic side. (C) The effect of MgATP is reversed by 
the addition of 30 nM PP-1 in the continued pres- 
ence of MgATP. 
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reversibly to an allosteric site, without ATP 
hydrolysis (8). To test the possibility that 
phosphorylation is involved in the effects of 
ATP on the Ca2+ -activated K+ channel, we 
added the purified catalytic subunit of pro- 
tein phosphatase 1 (PP-l), an enzyme spe- 
cific for phosphoserine and phosphothreo- 
nine residues, to the cytoplasmic side of the 
channel after channel activation by ATP. 
PP-1 (10 to 40 nM) reversed the ATP 
enhancement of activity (Fig. 1C) (n = 4), 
further supporting the notion that the ATP 
modulation is the result of phosphorylation. 
Treating channels with PP-1 without first 
adding ATP did not induce any change in 
the open probability (n = 4). 

We determined the time dependence of 
the change in open probability brought 
about by PP-1 (Fig. 2B). PP-1 induced a 
decrease in open probability within 1 to 3 
min and eventually the open probability 
returned to the control value. The channel 
activity remained at the control value for at 
least 1 hour, which is as long as we can 

Time (min) 

Fig. 2. The time course of the activity of the 
Caz+-activated K+ in the absence or presence of 
ATP and PP-1. Representative experiments for 
each experimental condition are shown. The 
threshold for detecting opening and closing tran- 
sitions was set to 50% of the open current for 
each individual event. Channel open probability 
was calculated continuously, and each point rep- 
resents the value for a 30-s sweep. (A) Activation 
of the channel by ATP. We adjusted the initial 
open probability to approximately 0.05 by adding 
either CaCI, or EGTA. The filled arrow marks the 
time at which 0.25 mM ATP was added. (B) The 
reversal by PP-1 of ATP activation. The open 
arrow marks the time at which 30 nM PP-1 was 
added. (C) Control channel activity. Open prob- 
abilities of other channels were adjusted to ap- 
proximately 0.05 or 0.60 and monitored contin- 
uously without addtion of ATP or PP-1. 

same channel can be decreased by PKA, and 
the actions of PKA are reversed by PP-2A 
but not by PP-1 (5), the endogenous pro- 
tein kinase is not PKA. Thus, the channel 
can be modulated in opposite directions bv 

1 1  

two distinct protein kinases and two distinct 
protein phosphatases. Our findings suggest 
that there is a regulatory complex tightly 
associated with some kinds of ion channels. 

Time (min) 

Fig. 3. Time course of the modulation of the 
Caz+-activated K+ channel by ATPyS (Boe- 
hringer Mannheim). The initial open probability 
was adjusted and calculated as in Fig. 2. The filled 
arrow marks the time at which 0.25 mM ATPyS 
was added. The results are representative of the 12 
(of 14) experiments in which ATPyS modulated 
channel activity. 

routinely maintain the bilayer. This action of 
PP-1 was not due to hydrolysis of ATP 
because ATP is not a substrate for the 
erizyme (9). In contrast to the effect of PP-1, 
PP-2A (up to 60 nM) failed to reverse the 
ATP modulation (n = 4). This lack of 
reversal by PP-2A indicates a degree of 
substrate specificity described only rarely for 
these two phosphatases (5, 10, 11). 

Because we did not add exogenous pro- 
tein kinase in these experiments, an endog- 
enous kinase activity must be responsible for 
h e  increase in open probability. ATP can 
modulate the channel even after the bilaver 
chamber has been perfused with excess big- 
er to remove any soluble proteins, as well as 
to remove the membrane vesicles that have 
been added to the bilayer chamber (n = 4). 
The results imply the participation of a 
protein kinase activity that inserts with the 
channel into the lipid bilayer. Furthermore, 
it can be calculated, from measurements of 
protein kinase activity in our vesicle prepa- 
ration and from knowledge of protein diffi- 
sion rates in lipid bilayers, that random 
interactions between the channel protein 
and protein kinase molecules moving inde- 
pendently in the bilayer are too infrequent 
to explain the time course of modulation by 
ATP (12). A more likely explanation is that 
the endogenous protein kinase is either part 
of the channel protein or is so intimately 
associated with the channel that it diffises 
together with it in the bilayer. The oscilla- 
tions in open probability seen in the pres- 
ence of ATP (Fig. 2; A and B) may indicate 
that some PP-1-like activity is also associat- 
ed with the reconstituted K+ channel. An- 
other type of K+ channel can be phospho- 
rylated by ATP in the absence of exogenous 
protein kinase (13). 

The endogenous protein kinase activity 
associated with ATP modulation of this 
Ca2+ -activated K+ channel remains to be 
characterized. Because the activity of this 
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Selective Inhibition of Leukemia Cell Proliferation by 
BCR-ABL Antisense Oligodeoxynucleotides 

To determine the role of the BCR-ABL gene in the proliferation of blast cells of 
patients with chronic myelogenous leukemia, leukemia blast cells were exposed to 
synthetic 18-mer oligodeoxynucleotides complementary to two identified BCR-ABL 
junctions. Leukemia colony formation was suppressed, whereas granulocyte-macro- 
phage colony formation from normal marrow progenitors was unaffected. When equal 
proportions of normal marrow progenitors and blast cells were mixed, exposed to the 
oligodeoxynucleotides, and assayed for residual colony formation, the majority of 
residual cells were normal. These findings demonstrate the requirement for a func- 
tional BCR-ABL gene in maintaining the leukemic phenotype and the feasibility of 
gene-targeted selective killing of neoplastic cells. 

T HE PHILADELPHIA CHROMOSOME leukemias (1) .  At the molecular level, the 
(Ph') translocation is the most com- most notable feature is the translocation of 
mon genetic abnormality in human the proto-oncogene ABL from chromosome 

9 to the breakpoint cluster region (BCR) on 
chromosome 22, result in^ in the formation 
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of BCR-ABL hybrid .ge;es (2). The ABL 
proto-oncogene n o r m a y  encodes a protein 
with tyrosine kinase activity (3); this activity 
is augmented in cells carrying BCR-ABL 
hybrid genes (4). The BCR-ABL transcripts 
are found in the vast majority of chronic mie- 
logenous leukemia (CML) patients and in Phl 
acute lymphocytlc leukemia patients (5) .  

CML invariably progresses from the 
chronic phase into Ahblast crisis. In chronic 
phase CML, the increase in mature and 
immature myeloid elements in bone marrow 
and peripheral blood is the most character- 
istic feature (6). Kinetic studies indicate that 
these abnormal cells do not proliferate or 
mature faster than their normal counter- 

parts. Instead, the basic defect underlying 
the abnormal degree of granulopoiesis in 
CML appears to reside in-the expansion of 
the myeloid progenitor cell pool in bone 
marrow and peripheral blood (6). Neverthe- 
less, the of terminally differenti- 
ated cells indicates that the process of he- 
matopoesis retains some normal features. In 
contrast, during blast transformation, the 
leukemic cells exhibit a marked degree of 
differentiation arrest with a "blast" pheno- 
type (7). The role of the BCR-ABL tran- 
script in the pathogenesis of the abnormal 
hematopoiesis of CML has been investigat- 
ed by introducing BCR-ABL constructs in 
mice and demonstrating the occurrence of a 
CML-like syndrome (8). To determine the 
functional relevance of the BCR-ABL pro- 
tein for the proliferation of leukemia cells 
(CML-BC), we selectively inhibited BCR- 
ABL protein synthesis by an antisense strat- 
egy (9) .  

Clonogenic assays of leukemia cells freshly 
obtained from individuals with mveloid 
CML-BC often revealed the formatibn of 
numerous colonies. In most.qses, a BCR- 
ABL transcript was amplified by the reverse 
transcriptase-polymerase chain - reaction 
(RT-PCR) technique with a 5' primer cor- 
responding to 22 bases of BCR exon 2 and 
a 3' primer complementary to 22 bases of 
ABL exon 2. Because blast colonies derived 
from cells of one patient were particularly 
numerous, they were pooled for RNA ex- 
traction; a region of 257 nucleotides corre- 
sponding to the BCR-ABL transcript was 
amplified by RT-PCR and cloned by blunt- 
end ligation into the Bluescript SK vector 
(Stratagene) that had been linearized by 
Sma I digestion. Sequence analysis of ten 
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