
p is small and will therefore be neglected. 
Because at p > 0.5 the percolation network 
is far from the percolation threshold, the 
structure is always compact and fractal struc- 
ture effect is not a consideration. At temDer- 

Heat Conductivity of Amorphous Solids: 
Simulation Results on Model Structures 

Through numerical simulation and consideration of phonon scattering by two-level 
states, the heat conductivity K(T), where T is temperature, has been calculated on 
model structures. The values obtained are in good quantitative agreement with 
measured data on ~polymethylrnethacrylate, epoxy, amorphous selenium, and amor- 
phous silicon dioxide over the temperature range 0.1 to 100 K. The calculated results 
reproduce the plateau feature, in the range of 5 to 20 K, that is generic to the heat 
conductivity of amorphous solids. Two model parameters, one characterizing the 
degree of structural disorder and the other related to the relaxational absorption of 
two-level states, are identified as being responsible for the behavior of K(T) at T 2 5 
K. The simulation results indicate the existence of a frequency-independent phonon 
diffusion regime that is consistent with the minimum phonon mean-free-path hypoth- 
esis. The magnitude of the phonon diffusion constant in this regime is shown to give 
a reasonable quantitative account of high-temperature K(T) in amorphous systems. 

T HE INTRIGUING DIFFERENCES IN 

the heat conductivity of amorphous 
and crystalline solids have been a 

topic of continued study and debate for the 
past four decades. At temperatures, 51 K, 
amorphous solids display a quadratic tem- 
perature dependence (1) instead of the p 
dependence exhibited by insulating crystals. 
This behavior is well understood in terms of 
the two-level (T-L) states theory ( 2 4 ,  al- 
though the physical basis of the T-L states 
has not yet been individually identified for 
every amorphous system. A second differ- 
ence, which is the focus of this study, is the 
existence of a "plateau" region in the heat 
conductivity (5) of amorphous solids, usu- 
ally extending from 5 to 30 K, that'is always 
followed by a hrther rise at higher temper- 
atures. Various theories interpret the plateau 
(6-9) and its subsequent rise (10-15) as 
resulting from phonon localization, pho- 
non-fracton crossover, the existence of a 
minimum phonon mean free path, hopping 
transport, and so on. However, there is still 
a lack of consistent demonstration of the 
plateau phenomenon, including its subse- 
quent rise, from a given structural model. A 
demonstration of this phenomenon would 
be valuable not ody  in identifying the pos- 
sible mechanism or mechanisms leading to 
the thermal conductivity plateau but would 
also test the degree to which the distinct 
features of the heat conductivity of amor- 
phous solids are the generic and universal 

consequences of disordered structures. 
We report here the resdts of nunierical 

simulation on a model amorphous system. 
By combining our simulation results with 
the T-L states theory, we demonstrate that 
not only can the plateau feature be repro- 
duced, but the calculated heat conductivity 
is ,also in good quantitative agreement with 
experimental data on four different amor- 
phous solids. Two physical parameters, plus 
the existence of an unusual phonon diffusion 
regime, are identified as being key to the 
plateau phenomenon and its subsequent 
high-temperature saturation. 

Because the phenomenon we address is 
generic to a wide class of amorphous solids, 
the element of structural disorder, which is a 
common feature of all amorphous materials, 
should be incorporated in any model. It also 
follows that features specific to each materi- 
al, such as chemical composition, chemical 
bonding, local structural order, the type of 
disorder, and so forth, should be less impor- 
tant 'to the plateau phenomenon. On the 
basis of these considerations, we chose as 
our structure the simple model of a percola- 
tion network, obtained by randomly placing 
atoms on a fraction p of the simple cubic 
lattice sites and then removing the isolated 
clusters. Here p is a parameter that controls 
the amount of disorder. The requirement 
that the structure be connected means thatp 
must be greater than the percolation thresh- 
old (16) p, - 0.31. By construction, the 
number density of the percolation network 

Exxon Research and Engineering Cnnpmy, Route 22 is less than P. as long as p > 0.5, 
East, Annandale, NJ 08801. the difference between the actual density and 

atures lower than the plateau regime, the 
heat conductivity of amorphous solids is 
dominated by phonon scattering by T-L 
states; therefore, we also assume that our 
model structure is decorated by a given 
density of T-L states. 

The heat conductivity ~ ( q ,  where T 
denotes temperature, can be written as 

where o is frequency, k is the Boltzmann 
constant, A is Planck's constant, n(o) de- 
notes phonon density of states, D(o)  is the 
phonon diffusion constant, and C is the 
specific heat of a phonon mode, given by 

Here x = AolkT. In our model D(o) has two 
contributions: diffusion due to scattering from 
random geometry, denoted DR(o), and a- 
sion due to scattering from two-level states, 
denoted as D,(o). Because these two types of 
scattering are parallel processes, under the as- 
sumption of additivity of rates they are related 
to the overall d8usion constant D(o) by 

where D,(o) is known to be in the form 
(1, 8 )  of 

D$ (o) = A (:) tanh ( g) + 

The first term of Eq. 4 is due to resonant 
scattering, whereas the second term is due to 
relaxational absorption. The constant A is pro- 
portional to the product of T-L state density 
and the square of the phonon-5-L state cou- 
pling constant. Its value is fixed by the &pe of 
the T2 variation at temperatures below the 
plateau regime. That means p and B are the 
only two adjustable parameters for the plateau 
phenomenon in our model. 

Consider the scalar displacement field + on a 
79 by 79 by 79 percolating network that 
satisfies the equation 

where i,j are the site indices that only count 
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freedom. Figure 3A compares our numerical 

oko i s  ido 1;s 150 1;5 2b0 

Time in units of 

Fig. 1. Variation of mean square distance with 
time for p = 0.65 and two different frequencies, 
w = ( 0 )  and w = P- (0) .  The 
dashed line indicate the asymptotic linear behav- 
ior of <4> as a function of time. 

occupied sites, m denotes the atomic mass, 
Py = p if sites i and j are nearest neighbors, 
and Py = 0 otherwise. Equation 5 is the 
discrete version of the scalar wave equation, 
d2+/dt2 - c2V2+ = 0, where c = a, m ,  
a, being the lattice constant. Although the 
phonon field is recognized as vector in na- 
ture, the scalar model is still expected to 
capture the essential features of K(T), which 
represents an integral effect of many pho- 
nons, in much the same spirit as the Debye 
model of specific heat. 

In orde' to obtain values of DR on the 
percolation network, an excitation of fre- 
quency o, modulated with a Gaussian enve- 
lope of half-width At = 6r /o  to 18r/o, is 
imposed on a single site close to the center 
of the network. The width of the source 
pulse implies a frequency spectrum width of 
about 0.1 to 0.3 times o .  One can calculate 
the subsequent spread of the pulse numeri- 
cally on a Cray-XMP computer by using Eq. 
5 up to the time when the pulse peak hits the 
sample boundary. The mean square radius 
< ?(t) > is calculated as 

C+T(t) $ 

where ri is the distance between site i and 
the excitation site, and the averaging is done 
by using the intensity +; of the phonon at 
site i (which is proportional to the local 
energy density) as the weight. A similar 
space-time simulation technique has been 
used to calculate the diffusion constant of 
electrons (17). Figure 1 shows <?(t) >, in 
units of (lattice constant as a function 
of time, in units of m. The value of p 
is 0.65. Results for two frequencies, 
o / m  = a12 and o / m  = 4 4 ,  are dis- 
played. Excellent asymptotic linear variation 
is seen; thus DR(o) may be evaluated as 
one-sixth of the asymptotic slopes. A single 
configuration can yield accurate results, and 
the value of DR(o) has been checked to be 

mi$.%% 

Fig. 2. Variation of the diffusion constant D, 
with frequency for four values of p: 0.85 (W), 
0.75 A), 0 65 ( 0 )  and 0.55 (+).,The dashed 
h e r  denote the  w-' asymptotic vvrauon due to 
Rayleigh scattering. 

repeatable from one configuration to the 
next (18), provided p stays the same and is 
20.5. 

Forp = 0.75, 0.65, and 0.55, the DR(o) 
values thus calculated are plotted in Fig. 2. 
Because we use a pulse excitation in our 
simulation, the frequency value of each 
point in the figure siould'be interpreted as 
the mean value averaged over a frequency 
window of o +. 0. l o .  Variation in the pulse 
width was found to have an insignificant 
effect on our results. At low frequencies, 
DR(o) is seen to always approach the oP4 
dependence (indicated by the dashed line) 
dictated by Rayleigh scattering. At the fre- 
quency o = o, where the mean free path 
.!? = 3D,(o)/v, where v denotes the acoustic 
velocity, is on the order of the' mean separa- 
tion between scatterers, DR(o) levels off to a 
plateau value, and for p < 0.65 the plateau 
value seems-to stay constant at Do = 0.17 
a;-. 

This behavior supports the minimum 
mean-free-path hypo&esis (8-14), but, be- 
cause the dispersion relation is not linear in 
this frequency range so that the phonon 
velocity is not well defined, conversion from 
diffusion constint to mean free path would 
have dubious meaning. Nevertheless, an ex- 
planation based on the minimum mean-free- 
path idea could be formulated for this diffi- 
sion regime (see below). At frequencies 
close to the band edge (19) (= for 
p = l ) ,  the linear <?(t)> versus t asymp- 
totic behavior is modified into a saturation 
behavior, implying DR(o) = 0. This is a 
reflection of phonon localization, which is 
known to occur first at the phonon band 
edge (20) as the amount of disorder is 
increased. 

For the phonon density of states n(o), we 
use the recursive Green's function technique 
(21) to evaluate the local density of states 
n,(o) numerically. The phonon density of 
states is then obtained as the configurational 
average of 3n0(o), where the factor 3 ac- 
counts for each atom's three degrees of 

calculation for n(o), normalized to each 
atom, with the known exact result forp = 1. 
(No configurational average is necessary 
here because every site is equivalent in this 
case.) At low frequencies, a3n(o) = 
02a3(2~2v3)-1, where a3 = is the 
atomic volume, and v = a, p/m is the 
acoustic velocity (dashed line in Fig. 3A). 
In Fig. 3B we show the calculated n(o) for 
p = 0.55, obtained by averaging over 100 
configurations, each 79 by 79 by 79. At 
low frequencies the acoustic velocity 
v = (pedmeff) 'I2, where me, = pm and 
peg = (probability that nearest-neighbor 
sites i and j are both occupied) x P = p2P. 
Therefore, 

(7) 

By using this v we get an excellent fit to the 
low-frequency n(o) (dashed line in Fig. 3B), 
which delineates the density of states for the 
Debye model. 

By using the simulated DR(o) and n(o), 
we can evaluate the heat conductivity K(T) 
by numerical integration of Eq. 1. To con- 
vert our results into actual physical units, the 

Fig. 3. (A) Phonon density of states. for the 
perfect lattice, p = 1, normalized to each atom. 
Open diamonds denote the exact solution. The 
solid line denotes the numerical results that one 
would obtain by using the recursive Green's hnc-  
tion method. The dashed line denotes the low- 
frequency behavior of the Debye model. (B) 
Phonon density of states for the percolation clus- 
ter at p = 0.55, normalized to each atom. The 
solid line denotes the numerical result obtained by 
using the recursive Green's function approach. 
The dashed line denotes the Debye model. Com- 
pared with (A), there is in (B) a significant shift 
downward in the density of states due to the 
softening of the lattice and the decrease of the 
acoustic velocity. 
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magnitudes of a, and are needed. For 
this conversion, we equate the average 
atomic volume a3 to that is, a, = p"3a, 
and use Eq. 7 to get m, or = v/ 
($a,) = p-516v/a, where we use the mea- 
sured acoustic velocity of the material for v. 
Figure 4 shows the results obtained for the 
~ ( 7 1  of four materials (8) (we have used 
p = 0.55 in all four cases). The material 
parameters used are v = 1.79 x lo5 cm s-' 
and a = 2.86 A for polymethylrnethacrylate 
(PMMA) (8, 22); v = 1.66 x lo5 cm s-' 
and a = 2.9 A for epoxy (8, 23); 
v = 1.56 x lo5 cm s-' and a = 3.12 A 
(calculated from a density of 4.3 @cm3 and 
atomic number of 79) for amorphous Se 
(8); and v = 4.1 X lo5 cm s-' and 
a = 2.47 A for amorphous SiO, (8,22). For 
the value ofA,  we used the literature values 
(8) of 2.63 x s-' K-' for amorphous 
SiO,, 2.22 x lop2  s-' K-' for amorphous 
Se, 1.68 x 10W2 s-' K-' for PMMA, and 
2.08 x lop2 s-' K-' for epoxy. The values 
of B obtained from the fits are 26.5 x 
K-', 12.3 x K-', 21.6 X lop3 KP2, 
and 38 x KP2 for PMMA, epoxy, 
amorphous Se, and amorphous SiO,, re- 
spectively. The B values for PMMA and 
amorphous SiO, do exhibit significant dif- 
ferences from those obtained by Graebner et 
al. (8), whereas those for epoxy and amor- 
phous Se are close. Lack of experimental 
data on the value of B precludes a judgment 
as to the reasonableness of our fitted values. 

Fig. 4. Log-log plot of heat conductivity K versus 
temperature T. Symbols denote a subset of data 
taken from (a),  displaced from each other for 
clarity. Epoxy data ( W )  are divided by 64. PMMA 
data (A) are divided by 16. Amorphous Se data 
(0) are divided by 8. Amorphous SiOz data are 
denoted by (0).  Solid lines show the calculated 
results. Values of the parameters used are given in 
the text. 

Three points about Fig. 4 should be not- 
ed. First, the magnitude of calculated ~ ( 7 1  
is in good overall agreement with the exper- 
imental data, even though we did not at- 
tempt to fine-tune the fitting by adjustingp. 
Second, in our calculation p controls the 
absolute value of ~ ( 7 1  for T > 5 K as well 
as the plateau width; that is, as p increases, 
the plateau region shrinks in width and 
increases in magnitude until abovep = 0.85 
the plateau completely disappears. The pa- 
rameter B, on the other hand, controls only 
the slope of the plateau. The rise in ~ ( 7 1  
beyond the plateau is virtually independent 
of the T-L states and is dependent only on 
Do and the density of states. This depen- 
dence may be made quantitative as seen later. 
Third, our fits are i&nsitive to changes of p 
and B. The value of p may be varied by a few 
percent and B may be adjusted upward or 
downward by 10 or 20% without sipticandy 
degradmg the quality of agreement. 

Within the framework of our model, the 
origin of the plateau phenomenon may be 
described as follows. From the simulated 
results for p = 0.55 the product n o D(o)  P has a valley at approximately o /  p/m = 1. 
As n(o)D(o) is integrated with C(Ao/kT) 
with B = 0, that is, no relaxational absorp- 
tion, the result is a monotonically increasing 
~ ( n  in which there is an inflection 
namely, a temperature region of slow in- 
crease (due to the Rayleigh scattering), fol- 
lowed by a faster rise [due to the rising 
n(o)D(o)] of ~ ( 7 1 .  The role of B, which 
from Eq. 4 is seen to control the relaxational 
absorption of T-L states, is simply to add a 
temperaturezdependent component to D(o )  
which decreases D(o )  as T increases, thus 
accentuating the inflection point in K(T) 
into a plateau. Therefore, in our model the 
plateau is due to Rayleigh scattering, but the 
rise after the plateau and the eventual satu- 
ration of ~ ( n  are due to the constant 
D,(o) [so that the n(o) peak is reserved in 
the product n(o)D(o)] and the eventual 
localization of phonons. 

The existence of a constant D,(o) -- D o  
region is crucial to the behavior of K(T) for 
T a 10 K. A possible explanation for this 
unusual region of D,(o) is as follows. As 
frequency increases in the Rayleigh scatter- 
ing regime, the rapidly increasing scattering 
strength would sharply decrease the mean 
free path C to at o = o,, where is the 
m e a  separation between scattering centers. 
Beyond that point, both v and wave vector k 
can no longer meaningiidy characterize the 
phonon states due to the strong scattering, and 
the phonon eigenfunctions are expected to 
become inhomogeneous on the scale of and 
disordered spati&. However, the phonons in 
this regime are still not localized because they 
display a finite diffusion constant. 

Because our simulation is done on a finite 
sample, the localized state that is most diffi- 
cult to detect is one in which the localization 
length diverges, that is, the state at the 
mobility edge, However, localization theory 
predicts that the diffusion constant of such a 
"nearly localized" state is inversely propor- 
tional to the d i h e d  distance so that instead 
of < 2 > a time, one would obtain < r3 > a 

time (24). In other words, there is finite- 
time manifestation of a localized state, even 
if the localization length is infinite. In Fig. 1, 
the line with open squares is representative 
of the time evolution behavior for a freauen- 
cy point in the regime under discussion. 
Clearly, no <r3> a time type of character- 
istic is seen, indicating that the state is not 
even "nearlv localized." The fact that we do 
see ~ocalizahon near the band edge is further 
proof that it is not that we cannot detect 
iocalization. but that'the states in this un- 
usual regime are actually not localized. 

For the diffusion constant in this regime, 
if one writes D, a z Z / ~ ,  then T is given by the 
only intrinsic time scale in the problem, - 
e3n(o). This T repesents the inverse of the 
mean frequency separation between phonon 
eigenstates in a volume F3,  and it governs 
the time evolution of any state that is a linear 
superposition of the inhomogeneous eigen- 
functions. The overall physical picture of 
this regime thus bears resemblance to that 

by Einstein (11). However, whereas 
in the Einstein model and its later generaliza- 
tion (12-14) the diffusion constant is either 
proportional or inversely proportional to o ,  
'here it is an approximate constant. This difFu- 
sive r e p e  46uld persist until the phonon 
localization effect sets in near the band edge. 

The relation between the (nearly) con- 
stant value of DR(o) = Do and the high- 
temperature saturation value of KO,, %, 
can be isolated and made quantitative. That 
is, if we focus on the quantity AK = 

K, - ~ ( 1 0  K), then AK is virtually indepen- 
dent of the T-L states characteristics and is 
controlled only by Do and n(o). In our 
model, one can calculate AK from Eq. 1 by 
replacing the lower bound of the integral by 
o, and setting T + m and D(o)  = DR(o).  
That yields AK = ~ , v k / a ~ ,  where K0=_0.49 
for p = 0.55 is a dimensionless constant. If 
we approximate K, by ~ ( 3 0 0  K), then exper- 
imentally KO = 0.35, 0.45, 0.59, 1.2, 0.62, 
and 0.28 for epoxy, PMMA, amorphous Se, 
amorphous SO,, nitrate glass (13), and 
As2S3 (13), respectively. Apart from amor- 
phous SiO, and As2S3, the agreement is 
remarkably good. Although the low value of 
KO for As2S3 may imply the existence of 
additional scattering processes, the large val- 
ue of KO for amorphous SiO, could mean 
that some additional heat transport mecha- 
nism is operative. 
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Quantification of Primary Versus Secondary C-H 
Bond Cleavage in Alkane Activation: Propane on Pt 

The trapping-mediated dissociative chemisorption of three isotopes of propane (C3H,, 
CH3,CD,CH,, and C3D,) has been investigated on the Pt(ll0)-(1 x 2) surface, and 
both the apparent activation energies and the preexponential factors of the surface 
reaction rate coefficients have been measured. In addition, the probabilities of primary 
and secondary C-H bond cleavage for alkane activation on a surface were evaluated. 
The activation energy for primary C-H bond cleavage was 425 calories per mole 
greater than that of secondary C-H bond cleavage, and the two true activation energies 
that embody the single measured activation energy were determined for each of the 
three isotopes. Secondary C-H bond cleavage is also preferred on entropic grounds, 
and the magnitude of the effect was quantified. 

OTH DUE TO ITS EXTREME TECHNO- 

logical importance and its intrinsic 
scientific challenge, the activation of 

alkane molecules by both homogeneous tran- 
sition metal complexes (1) and heterogeneous 
surfaces ( 2 4 )  has been a very active area of 
research during the past decade. Alkane activa- 
tion by transition metal surfaces ( G H  bond 
cleavage resulting in dissociative chemisorp- 
tion) has been studied by both molecular beam 
scattering (5-8) as well as "bulb" chemical 
reaction (9-13) investigations. Two hdarnen- 
tally different reaction mechanisms have 
emerged from these studies of alkane activa- 
tion. These two mechanisms are the following: 
(i) direct dissociation; and (ii) trapping-medi- 
ated dissociative chemisorption. 

Direct dissociative chemisorption occurs 
on the time scale of a collision between the 
gas-phase molecule and the surface (5 10-l2 
s), and the rate of this reaction depends 
primarily on the translational and internal 
energies of the gas-phase molecule (and to a 
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lesser extent on the temperature of the sur- 
face) (3, 4). In trapping-mediated dissocia- 
tive chemisorption, the gas-phase molecule 
is trapped in the potential field of the surface 
(that is, it is adsorbed physically in the case 
of an alkane) and it accommodates to the 
temperature of the surface. The physically 
adsorbed molecule may then either desorb 
with a rate coefficient kd (with an associated 
activation energy of desorption Ed) or it 
may react (dissociate) with a rate coefficient 
k, [with an associated activation energy of 
reaction (E,) (4, 14-1 7)] .- The rate of this 
reaction is a hnction of the surface temper- 
ature. The gas temperature is important only 
insofar as it &ects the probability of trap- 
ping into the physically adsorbed state. 
When a molecular beam of reactants with 
sufficiently high translational energy im- 
pinges on a surface, the direct mechanism 
would be favored primarily because the trap- 
ping probability becomes very small in this 
case. In a bulb rather than a beam environment, 
which one encounters more typically in tech- 
nological processes, the trapping-mediated 
mechanism is expected to dominate. An excep- 
tion to this rule would occur if E, - Ed were 
sufficiently large that the surface temperature 
would have to be so high for the reaction to 
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occur that the residence time of the molecular 
adsorbate is too short for accommodation and 
reaction through this Gapping-mediated mech- 
anism. This appears to be the case, for example, 
for the dissociative adsorption of methane on 
low-index surfaces of nickel (3, 6, 1 I), but it is 
not the case for methane on the Pt(ll0)- 
(1 x 2) surface (13). For all ahnes  with the 
possible exception of methane, in a bulb exper- 
iment with a Maxwell-Boltzmann distribution 
of velocities, one expects the trapping-mediated 
mechanism to dominate. 

The results of an investigation of the 
dissociative chemisorption of propane on 
the reconstructed and highly corrugated 
Pt(l l0)-(1 x 2) surface (10, 13, 18) are 
reported here, where the trapping-mediated 
mechanism of chemisorption occurs. Three 
different isotopes of propane (C3H,, C3D,, 
and CH3CD2CH3) were used to determine 
the relative probability of primary ( lo)  ver- 
sus secondary (2") C-H bond cleavage in 
linear alkanes such as propane, in which 
there are two inequivalent kinds of C-H 
bonds. Since the bond dissociation energy 
of the lo C-H bonds in propane is 97.9 r 1 
kcal/mol whereas that of the 2" C-H bonds 
is 95.1 1 kcal/mol (19), and because it 
seems unlikelv that the bond dissociation 
energies of the two platinum-propyls that 
are formed in the reaction would have a 
difference that is this great, one might expect 
a priori a preference for the formati~n of 
Pt-CH(CH3), (17). Steric constraints might 
also favor one reaction product over the other 
in a heretofore unknown way. This is an im- 
portant issue which has rather profound mech- 
anistic implications insofar as selectivity in het- 
erogeneous catalysis is concerned. As discussed 
below, a propensity for the 2" G H  bond- 
cleavage reaction for propane on this surface of 
platinum has been confirmed and quantified. 

The measurements were carried out in an 
ion-pumped ultrahigh vacuum (UHV) mi- 
croreactor (base pressure of 3 x lo-'' torr, 
volume of 30 cm3) (13, 20). The experi- 
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