
Statistical Data Analysis in the Computer Age 

Most of our familiar statistical methods, such as hypoth- 
esis teskg,  linear regression, analysis of variance, and 
maximum likelihood estimation, were designed to be 
implemented on mechanical calculators. Modern elec- 
tronic computation has encouraged a host of new statis- 
tical methods that require fewer distributional assump- 
tions than their predecessors and can be applied to more 
complicated statistical estimators. These methods allow 
the scientist to explore and describe data and draw valid 
statistical inferences without the usual concerns for math- 
ematical tractability. This is possible because traditional 
methods of mathematical analysis are replaced by special- 
ly constructed computer algorithms. Mathematics has not 
disappeared &om statistical theory. It is the main method 
for deciding which algorithms are correct and efficient 
tools for automating statistical inference. 

M OST SCIENTISTS FACE PROBLEMS OF DATA ANALYSIS: 
What data should I collect? What can I conclude from my 
data? How far can I trust the conclusions? Statistics is the 

mathematical science that deals with these questions. Some statisti- 
cal methods, such as linear regression, hypothesis testing, standard 
errors, and coddence intervals, have become familiar in the scien- 
ti6c literature over time. Most of the "classical" methods were 
developed between 1920 and 1950, by scientists such as R. A. 
Fisher, J. Neyman, and H. Hotelling, who were senior colleagues to 
statisticians still active today. 

The 1980s produced a rising curve of new statistical theory and 
methods based on the power of electronic computation. Today's 
data analyst can &ord to expend more computation on a single 
problem than the world's yearly total of statistical computation in 
the 1920s. How can such computational wealth be spent wisely, in 
a way that genuinely adds to the classical methodology without 
merely elaborating it? Answering this question has become a 
dominant theme of modern statistical theory. 

Some promising developments in computer-intensive statistical 
methodology are described in this article. The examples involve 
bootstrap methods, nonparametric regression, generalized additive 
models, and classification and regression trees. The presentation 
here is mainly descriptive, without much mathematical develop- 
ment. However, we will try to indicate the crucial role that 
mathematics plays in tying the new statistical methods to their 
classical antecedents. 
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The Bootstrap 

In almost every statistical data analysis, on the basis of a data set 
x we calculate a statistic t(x) for the purpose of estimating some 
quantity of interest. Box 1 shows the cholesterol reduction scores of 
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Box 1 

nine men after taking cholestyramine; the scores are an ordered 
random sample from the scores.of 164 men (1). The data set x could 
be these nine scores, and t(x) could be their mean value Z = 28.58, 
intended as an estimate of the true mean value of the cholesterol 
reduction scores. (The true mean value is the mean we would obtain 
if we observed a much larger set of scores.) The following h d a -  
mental question arises: how accurate is t(x)? 

This question has a simple answer ift(x) is the mean Z of numbers 
x,, x,, .-. . , x,. Then thestandard error of X, its root- mean-square 
error, is estimated by a formula made famous in elementary statistics 
courses 

For the nine numbers in Box 1, Eq. 1 gives 10.13. The estimate of 
the true cholesterol reduction mean would usually be expressed as 
28.58 ? 10.13, or perhaps 28.58 ? 10:13z, where z is some 
constant, such as 1.645 or 1.960, relating to areas under a bell- 
shaped curve. With z = 1.645, the interval has approximately 90% 
chance of containing the true mean value. In other words, it is an 
approximate 90% cordidence interval. 

The bootstrap ( 2 )  was introduced primarily as a device for 
extending Eq. 1 to estimators other than the mean. For example 
suppose t(x) is the 25% trimmed mean, Zf0.251, defined as the 
average of the middle 50% of the data. We order the observations 
x,, x2, . . . , x,, discard the lower and upper 25% of them, and take 
the mean of the remaining 50%. Interpolation is required for cases 
where 0.25n is not an integer. For the cholesterol data 

There is no neat algebraic formula such as Eq. 1 for the standard 
error of a trimmed mean or for almost any estimate other than the 
mean. That is why the mean is so popular in statistics courses. In lieu 
of a formula, the bootstrap uses computational power to get a 
numerical estimate of the standard error. The bootstrap algorithm 
depends on the notion of a bootstrap sample, which is a sample of 
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size n drawn with replacement from the original data set x = (x,, x,, 
. . . , x,). The bootstrap sample is denoted x* = (xy, x+,, . . . , x*,). 
Each x: is one of the original x values, randomly selected (perhaps 
x: = x,, x+, = x5, x+3 = x5, x$ = x9, x+5 = x7, and so forth). The 
name "bootstrap" refers to the use of the original data set to generate 
new data sets x*. 

The bootstrap estimate of standard error for Zi0.25) is computed 
as follows: (i) a large number B of independent bootstrap samples, 
each of size n, is generated using a random number device, (ii) the 
25% trimmed mean is calculated for each bootstrap sample, and (iii) 
the empirical standard deviation of the B bootstrap t r h e d  means 
is the bootstrap estimate of standard error for Z{0.25). A schematic 
diagram of the bootstrap algorithm, applied to a general statistic 
t(x), is shown in Fig. 1. 

These bootstrap estimates of standard error for the 25% trimmed 
mean, applied to the cholesterol data, were obtained for different 
values of B: B = 25, bootstrap estimate = 12.44; B = 50, bootstrap 
estimate = 9.71; B = 100, bootstrap estimate = 11.50; B = 200, 
bootstrap estimate = 10.70; B = 400, bootstrap estimate = 10.48. 
Ideally, B would go to infinity. However, randomness in the 
bootstrap standard error that comes from using a finite value of B is 
usually negligible for B greater than 200; that is, this randomness 
would be small relative to the randomness caused bv variations in 
the original data set x. Even values of B as small as 25 often give 
satisfactory results. This can be important if the statistic t(x) is 
difficult to compute because the bootstrap algorithm requires about 
B times as much computation as t(x). 

The bootstrap algorithm can be applied to almost any statistical 
estimation problem: (i) The individual data points xi need not be 
single numbers; they can be vectors, matrices, or more general 

such as maps or graphs. (ii) The statistic t(x) can be 
anything at all, as long as we can compute t(x*) for every bootstrap 
data set x*. (iii) The data set x does not have to be a simple random 
sample from a single distribution. Other data structures, for exam- 
ple, regression models, time series, or stratified samples, can be 
accommodated by appropriate changes in the definition of a boot- 
strap sample. (iv) Measures of statistical accuracy other than the 
standard error, for instance, biases, mean absolute value errors, and 
confidence intervals, can be calculated at thk final stage of the 
algorithm (3). The example below illustrates some of these points. 

There is one statistic t(x) for which one does not need the 
computer to calculate the bootstrap standard error, namely the mean 
Z. 1; this case, it can be proved that, as B oes to i&nity, the 
bootstrap standard error estimate goes to 6 times Eq. 1. 
The factor v ( n  - l)/n, which equals 0.943 for n = 9, could be 
removed by redefinition of the last step of the bootstrap algorithii, 
but there is no general advantage to doing so. For the statistic Z, 
using the bootstrap algorithm gives about the same result as Eq. 1. 

At a deeper level, the logic that makes Eq. 1 a reasonable assessment 
of standard error for Z applies equally well to the bootstrap as an 
assessment of standard error for a general statistic t(x). In both cases, 
the standard error of the statistic of interest is assessed bv the true 
standard error that would apply if the unknown probabili& distribu- 

Fig. 2. Bootstrap estimates of stan- 
dard error for five different trimmed 
meansZ@),p = 0,0.10,0.25,0.40, 
0.5, applied to the cholesterol data 
of Box 1, based on B = 400 boot- 
strap samples. Also shown is the true 
standard error of Z@), obtained by 
taking random samples of size 9 
from the population of 164 choles- 
terol reduction scores. In this case, 
the bootstrap correctly indicates that 
Z{O), the ordinary mean, gives the 
smallest standard error. 

Trim proportion 

tion yielding the data exactly equaled the empirical distribution of the 
data. The efficacy of this simple estimation principle has been verified 
by a large amount of theoretical work in the statistics literature of the 
past decade; see (3-5) and references within. 

Why use a trimmed mean rather than Z? The theory of robust 
statistics, developed since 1960, shows that if the data x comes from 
a long-tailed probability distribution, then the trimmed mean can be 
substantially more accurate than Z. That is, it can have substantially 
smaller standard error (6, 7). In practice, however, one does not 
know a priori if the true probability distribution is long-tailed. The 
bootstrap can help answer this question. 

The bootstrap estimates of standard error for five different 
trimmed means Zk), where p is the proportion of the data trimmed 
off each end of the sample before the mean is taken are shown in Fig. 
2. (So Z{O) is Z, the usual mean, whereas Zf0.5) is the median.) 
These were computed with the use of the bootstrap algorithm in 
Fig. 1 (B = 400), except that at step 2, bootstrap replication, five 
different statistics were evaluated for each bootstrap sample x*, 
namely Z{O}, Z{O. 10},Z{0.25), Z{0.40), and Z{0.50). 

According to the bootstrap standard errors in Fig. 2, the ordinary 
mean has the smallest standard error among the five trimmed means. 
This seems to indicate that there is no advantage to trimming for this 
particular data set. 

The nine cholesterol reduction scores in Box 1 were a random 
sample from a larger data set: 164 scores, corresponding to the 164 
men in the Stanford arm of a large clinical trial designed to test the 
efficiency of the cholesterol-reducing drug cholestyramine (8). With 
all of this extra data available, the bootstrap standard errors can be 
checked. The solid line in Fig. 2 indicates the true standard errors for 
each of the five trimmed means, that is, the standard errors of 
random samples of size 9 taken from the population of 164 scores. 

We see that the true standard errors codrm the bootstrap 
conclusion that the ordinary mean is the estimator of choice in this 
case. The main point here is that the bootstrap estimates use only the 
data in Box 1, whereas the true standard errors require extra data 
that usually is not available in a real data analysis problem. 

Theoretical work on properties of the bootstrap is proceeding at 
a vigorous pace (4, 5). We have emphasized standard errors here, 
but the main theoretical thrust has been toward coddence intervals. 
Getting dependable confidence intervals from bootstrap calculations 
is challenging, in theory and in practice, but progress on both fronts 
has been considerable. 

Nonpararnetric Regression 
The data for all 164 men in the Stanford arm of the choles- 

tyramine experiment are shown in Fig. 3. The vertical axis plots the 
cholesterol reduction scores, nine of which appear in Box 1. The 
horizontal axis plots compliance, the proportion of the intended 
dose each man actually took (measured by counting of the packets of 
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unused cholestyramine returned to the clinic). Better compliance 
tends to be associated with a greater reduction in cholesterol, as 
might be hoped. 

The smooth curve in Fig. 3 is a quadratic regression curve fit to 
the 164 data points. In other words, it is the quadratic function of 
compliance that minimizes the sum of the 164 squared distances 
from the curve to the data points, where distance is measured in the 
vertical direction. Least-squares regression is a classical estimation 
method dating back to Gauss and Legendre in the early 1800s (9). 
The height of the quadratic curve at 60% compliance is 27.72 + 
3.08. The standard error 3.08 is provided by a formula much like 
Eq. 1, which is not surprising because the average Z is the simplest 
example of a least-squares estimate. 

The value 27.72 estimates the true amount of cholesterol reduc- 
tion at the average compliance (60%), a quantity of particular 
importance in assessing the true cholesterol-reducing powers of 
cholestyramine (8). One might worry that a quadratic function of 
compli&ce does not accurately model chole&erol reduction as a 
function of compliance. If not, the estimate 27.72 will be biased, a 
form of statistical error not included in the formula that gave 3.08. 

The irregular curve in Fig. 3 was obtained using loess (pro- 
nounced "low ess") (lo), a computer-based fitting method that does 
not attempt to fit a simple model, like a quadratic curve, over the 
entire compliance range. Instead, loess fits a series of local regression 
curves for different values of compliance, in each case using only data 
points near the compliance value of interest. 

Loess works in the following way (Fig. 4). First, a window of 
points (the shaded region) closest to the target point (arrow) is 
formed; in this case, the window contains the nearest 20% of the 
data points. Then a smooth weight function (dotted curve) known 
as the mcube function is constructed so that it is highest at the target 
point and falls to zero at the edges of the shaded region. Finally, a 
weighted linear regression (dashed line) is estimated for the points 
in the shaded region, with the weights determined by the tricube 
function. This process defines the estimate at the target point. 
Repeating the process for all possible target points gives the solid 
curve in Fig. 4. This curve is called a nonparametric regression 

Flg. '3. Cholesterol reduction scores of 164 men in the Stanford arm of 
experiment LRC-CPPT plotted against compliance, measured as the per- 
centage of intended cholestyramine dose that was actually taken. The average 
compliance was 60%. The smooth curve is a quadratic regression fit to the 
164 points by least squares; the irregular curve is loess, a scatterplot 
smoother that uses local regressions fit to a moving window of 20% of the 
points. 

Fig. 4. How the loess 
smoother works. The 
shaded region indicates 
the window of points 
around the target point 
(arrow). A weighted lin- 
ear regression (dashed 
line) is computed, with 
weights given by the 
mcube function (dotted 
curve). Repetition of 
this process for all target 
points gives the solid 
curve. 

estimate because it does not assume a particular parametric form 
(such as quadratic) for the regression. 

The height of the loess curve at 60% compliance is 32.38, which 
indicates substantially greater cholesterol-reducing power than the 
quadratic estimate 27.72. But how dependable is the loess answer? 
It is bound to be less biased than the quadratic estimate because it 
makes fewer assumptions about the form of the dependence be- 
tween compliance and cholesterol reduction. However, one cannot 
assess its value as an estimate without some idea of its standard error, 
and there is nothing like Eq. 1 for loess. 

The bootstrap algorithm for standard error can be applied exactly 
as described in Fig. 1. Now n = 164, and each xi is the pair of 
numbers (compliance, cholesterol reduction score) for patient i. The 
function t(x*) takes any data set x* consisting of 164 pairs, applies 
the loess algorithm to it, and reads off the height of the loess 
function evaluated at 60% compliance. Knowledge of the compli- 
cated details of the loess algorithm, is not necessary. All one need do 
is call the same loess subroutine that gave the estimate 32.38 for the 
original data set. 

The bootstrap algorithm was run with B = 50, and the first 15 of 
the bootstrap loess curves are shown (Fig. 5). There is considerable 
variability in the intercepts of these curves at 60% compliance. The 
bootstrap estimate of standard error for the intercept, based on all 
50 bootstrap replications, was 5.71, nearly twice the standard error 
of the quadratic fit. On balance, the quadratic estimate should 
probably be preferred in this case. It would have to have an 
unusually large bias to undo its superiority in standard error. 

Generalized Additive Models 
Nonparametric regression procedures like loess can be used to 

model complex data in a flexible manner. This allows the data analyst 
to make new discoveries about the data. As an example, ~ i l l i k s  
and colleagues from Toronto's Hospital for Sick Children collected 
data on the survival of 497 infants after cardiac surgery for h e q  
defects, for the years 1983 to 1988 (1 1). This was an observational 
study rather than randomized clinical trials. A warm-blood car- 
dioplegia (WBC) arrest of the heart, thought to improve chances for 
survival, was introduced in February 1988. The procedure was used 
on those infants for whom it was thought appropriate and only by 
those surgeons who liked the procedure. The main question was 
whether the introduction of WBC improved survival relative to the 
standard treatment; the importance of risk factors age (in days) and 
weight (in kilograms) was also of interest. Of the 57 infants who 
received WBC, 7 died; of the 440 infants who received the standard 
procedure, 133 died. WBC seemed to be improving the survival rate 
considerably. 

A linear logistic model is the standard way to approach problems 
of this kind. This model assumes that the log of the odds ratio, 
probability (death)/probability (survival), is a linear function of the 
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Fig. 5. The first 15 of ,20 
the 50 bootstrap loess 
curves, based on the data loo 
for 164 men (Fig. 3). 
The intercept at 60% 2 
compliance has empirical 8 80 
standard deviation 5.71, g 
based on all B = 50 ?j60 
bootstrap replications. 
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age and weight of the infant, plus a term indicating if WBC was 
used. The results of fitting a linear logistic model to these data 
suggested that WBC had a strong beneficial effect on survival, with 
an odds ratio of 3.8 2 1.8. Thus the odds of dying were 3.8 times 
as high with the standard treatment as with WBC. Furthermore, the 
risk of death decreased with weight, but the age of the infant did not 
have a significant effect on survival. 

Using nonparametric regression procedures, one can learn more 
from the data. Rather than assuming that the log-odds of survival is 
a linear function of age and weight, one assumes only that it is a sum 
of a smooth function of age and a smooth function of weight. This 
is an example of a generalized additive model (12). The data analyst 
is not required to specify the form of these smooth functions (such 
as linear, quadratic, or logarithmic); instead, the form of each of 
these functions is estimated by a computer-intensive algorithm that 
makes repeated use of nonparametric regression procedure such as 
loess. 

The curves that resulted from a fit of the generalized additive 
model are shown in Fig. 6. The shaded regions are approximate 
confidence bands for the curves. The left curve, for example, 
represents the log-odds of death as a function of the weight of the 
infant. The log-odds is highest for the lighter infants (-1) ind 
lowest for the heavier infants (- -3). Hence the odds ratio for light 
versus heavy infants is the exponential of [ l  - (-3)] = 55. The 
log-odds does not start to decrease until the infant is at least 3 or 3.5 

kg. 
The log-odds curve for age is, perhaps, surprising. The operation 

is least dangerous for infants who are about 200 days old and is 
more risky for younger or older infants. In a traditional logistic 
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Fig. 6. Function estimates from the heart data (1 1). The curve on the left 
represents the log-odds of death as a function of weight; the curve on the 
right is the log-odds of death as a function of age. The shaded regions are 
approximate confidence bands. 

regression, these curves might be forced to be straight lines, and one 
would not discover the effects seen in these pictures. The danger of 
oversimplified regressions becomes more acute in more complicated 
situations where there are large numbers of explanatory variables. 

The generalized additive model also provides an assessment of 
WBC. The estimated odds ratio for the standard treatment versus 
WBC was 4.2 + 1.9, almost the same as the linear logistic estimate. 

Modern statistical tools that are powerfd and flexible also tend to 
be more difficult to analyze mathematically. For example, because of 
the complexity of the generalized additive model, many approxirna- 
tions were used to obtain the value 1.9 for the standard error 
reported above. With so much at stake medically, some additional 
effort to check the accuracy of this value is worthwhile. The 
bootstrap can be used to accomplish this. A bootstrap sample is 
created by random drawing of 497 patients with replacement from 
the original set of 497 patients. A generalized additive model is fit to 
the bootstrap sample and the estimated odds ratio for WBC is 
recorded. This entire process is repeated a large number of times, in 
this case 100. The standard deviation of the 100 odds ratios equaled 
2.0, just slightly larger than the approximate value 1.9. The agree- 
ment of the bootstrap with the approximate standard error strength- 
ens our belief in both of them. 

Generalized additive models can be applied in a wide variety of 
settings, providing a flexible tool for discovering the underlying 
structure of scientific processes. Although the algorithm to fit these 
models required a mainframe computer 10 years ago, now the 
computations can be carried out on a personal computer. General- 
ized additive models are just one example of flexible modeling tools 
that exploit the power of the computer. The development of such 
tools is an active area of statistical research. 

Classification and Regression Trees 
In an experiment designed to provide information about the 

causes of duodenal ulcers (13), one of 56 model alkyl nucleophiles 
was administered to each of a sample of 745 rats. Each rat was later 
autopsied to check for the development of duodenal ulcer and the 
outcome was classified as 1, 2, or 3 in increasing order of severity. 
There were 535 class 1, 90 class 2, and 120 class 3 outcomes. The 
objective in the analysis of these data was to ascertain which of 67 
characteristics of these compounds was associated with the develop- 
ment of duodenal ulcers. 

The CART (Classification and Regression Trees) method (14) is 
a computer-intensive approach to this problem. When applied to 
this data, CART produced the classification tree shown in Fig. 7. 

At each node of the tree a question is asked; data points for which 
the answer is eves" are assigned to the left branch and other data 
points are assigned to the right branch. The leaves of the tree in Fig. 
7 are called terminal nodes. Each observation is assigned to one of 
the terminal nodes on the basis of the answers to the questions. For 
example, a rat that received a compound with dipole moment 
13.56 D and melting point >98.1°C would go left, then right, and 
would end up in the terminal node [13,7,41]. Triplets of numbers 
such as [13, 7, 411 below each terminal node number indicate the 
membership at that node, that is, 13 class 1, 7 class 2, and 41 class 
3 observations. 

In the CART procedure, each terminal node is assigned a class (1, 
2, or 3). The most obvious way to assign classes to the terminal 
nodes is to use a majority rule and assign the class that is most 
numerous in the node. With a majority rule, node [13,7,41] would 
be assigned to class 3 and all of the other terminal nodes would be 
assigned to class 1. In this study, however, the investigators decided 
that it would be less desirable to misclassify an animal with a severe 
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ulcer than one with a milder ulcer. and hence thev prescribed a 
higher penalty to errors of the former type. ~ h r o u ~ h  &e use of the 
prescribed penalties, a best rule for each terminal node can then be 
worked out. The assigned class is underlined at each terminal node 
in Fig. 7; for example, the node at the bottom left ([lo, 0, 51) has 
the number 5 underlined and hence is a class 3 node. 

We can summarize the tree as follows. The top (root) node was 
split on dipole moment. A high dipole moment indicates the 
presence of electronegative groups. This split separates the class 1 
and 2 compounds: the ratio of class 2 to class 1 in the right split 
(661180) is more than five times as large as the ratio in the left split 
(241355). However, the class 3 compounds are divided equally, 60 
on each side of the split. If, in addition, the sum of squared atomic 
charges is low, then CART finds that all compounds are class 1. 
Hence ionization is a major determinant of biologic action in 
compounds with high dipole moments. Moving further down the 
right side of the tree, the solubility in octanol then partially separates 
class 3 from class 2 compounds. High octanol solubility probably 
reflects the ability to cross membranes and to enter the central 
nervous system. 

On the left side of the root node, compounds with low dipole 
moment and high melting point were found to be class 3 (severe). 
Compounds at this terminal node are related to cystearnine (2- 
aminoethanethiol). Compounds with low melting pdints and high 
polarizability, all thiols in this study, were classified as class 2 or 3, 
with the partition coefficient separating these two classes. Of those 
chemicals with low polarizability, those of high density were 
classified as class 1. These chemicals have high molecular weight and 
volume, and this terminal node contains the highest number of 
observations. The low-density side of the split is composed of all 
short chain mines. 

In statistical terminology, the data set of 745 observations is called 
a learning sample. It is easy to work out the misclassification rate for .. 
each class when the tree of Fig. 7 is applied to the learning sample. 
Looking at the terminal nodes that predict classes 2 or 3, the number 
of errors for class 1 is 13 + 89 + 50 + 10 + 25 + 25 = 212, so the 
apparent misclassification rate for class 1 is 2121535 = 39.6%. 
Similarly, the apparent misclassification rates for classes 2 and 3 are 
56.7% and 18.3%. "Apparent" is an important qualifier here 
because misclassification rates in the learning sample can be badly 
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Fig. 7. CART tree. Classification tree from the CART analysis of data on 
duodenal ulcers (13). At each node of the tree, a question is asked; data 
points for which the answer is "yes" are assigned to the left branch, and other 
data points are assigned to the right branch. 

biased downward, as discussed below. 
How does CART build a tree like that in Fig. 7? CART is a fully 

automatic procedure that chooses the splitting variables and split- 
ting points that best discriminate between the outcome classes. For 
example, the split "dipole moment 13.56" was determined to best 
separate the data with respect to the outcome classes. CART chose 
both the splitting variable, dipole moment, and the splitting value, 
3.56. Having found the first splitting rule, new splitting rules are 
selected for each of the two resulting groups, and this process is 
repeated. 

Rather than stopping when the tree is some reasonable size, the 
inventors of CART discovered a better approach: a large tree is 
constructed and then pruned from the bottom. This latter approach 
is more effective in discovering interactions that involve several 
variables. 

How large should the tree be? If we were to build a very large tree 
with only one observation in each terminal node, then the apparent 
misclassification rate would be 0%. However, this tree would 
probably poorly predict the outcomes for a new sample of rats 
because it is too much geared to the learning sample; in statistical 
terminology, it is overfit. 

The tree of best size would have the lowest misclassification rate 
for some new data. Thus, if one had a second data set available (a test 
sample), one could apply the trees of various sizes to it and then 
choose the one with lowest misclassification rate. 

In most situations, one does not have extra data to work with. 
Data is so precious that all of it is used to estimate the best possible 
tree. CART uses the method of cross-validation to choose the tree 
size; this method attempts to mimic the use of a test sample. It 
works by dividing the data into ten groups of equal size, building a 
tree on 90% of the data, and then assessing the tree's misclassifica- 
tion rate on the remaining 10% of the data. This is done for each of 
the ten groups in turn, and the total misclassification rate is 
computed over the ten runs. The best tree size is determined to be 
that tree size giving the lowest misclassification rate. This size is used 
in constructing the final tree from all of the data. The crucial feature 
of cross-validation is the separation of data for building and 
assessing the trees: each one-tenth of the data acts as a test sample for 
the other nine-tenths. 

The process of cross-validation not only provides an estimate of 
the best tree size, it also gives a realistic estimate of the misclassifi- 
cation rate of the final tree. The learning sample misclassification 
rates computed above are often unrealistically low because the 
training sample is used both for building and for assessing the tree. 
For the tree of Fig. 7, the cross-validated misclassification rates were 
about 10% higher than the learning sampling misclassification rates. 
It is the cross-validated rates that provide an honest assessment of 
how effective the tree will be in classifying a new sample of animals. 

The theory underlying cross-validation is closely related to the 
bootstrap. Current research involves hybrids of the bootstrap and 
cross-validation that outperform both of them in the assessment of 
error rates. 

Conclusion 
The methods we have discussed are modern versions of traditional 

statistical tools. Loess, generalized additive models, and CART are 
different ways to expand the scope of linear regression. The boot- 
strap and cross-validation are improved variants of the familiar error 
estimate in Eq. 1. All of these developments, and a host of others we 
have not mentioned, differ in one important way from their classical 
predecessors: they substitute computer algorithms for the tradition- 
al mathematical ways of getting a numerical answer. One immediate 
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Enols and Other Reactive Species 

Rapid advances in the chemistry of enols and other reactive 
species have been made possible recently by the development 
of methods for generating these short-lived substances in 
solution under conditions where they can be observed direa- 
ly and their reactions can be monitored accurately. New 
laboratory techniques are described and a sample of the new 
chemistry they have made available is provided; special atten- 
tion is given to pols  and ynamines and the remarkable effects 
that the carbon-carbon triple bonds of these substances have 
on their acid-base properties. 

T HE CHEMISTRY OF ENOLS IS CURRENTLY EXPERTENCING A 

renaissance ( 1 )  primarily because of the development of 
methods for generating these usually very reactive substances 

in solution under conditions where their reactions can be studied in 
detail. Such studies are worthwhile because enols and enolate ions 
are essential intermediates in many important reactions of carbonyl 
compounds, and a number of biological reactions also involve en01 
formation; if we wish to understand these processes, and through 
understanding to control them, we must understand the chemistry 
of enols. 

We began work in this area by examining en01 isomers of simple 
aldehydes and ketones. That work, however, soon led to the 
investigation of other reactive species, such as enols of carboxylic 
acids and their derivatives, ketenes, carbenes, ynols, and ynamines. 
The latter are especially fascinating substances: they are believed to 
exist in interstellar space and are postulated as prebiotic molecules. 
We have discovered that the carbon-carbon triple bond in ynols and 
ynamines exerts a remarkable influence on the acid-base properties 
of their hydroxyl and amino groups; theoretical calculations at the 
ab initio level have helped us understand the origins of this effect. 

This article begins with an account of our work on enols and 
continues with a description of what we have learned about ynols and 
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ynarnines. Although the discussion is limited largely to research done 
in our own laboratory, we owe much to stimulation provided by the 
pioneering work of Guthrie et at. (Z), Capon et at. (3), Dubois, 
Toullec, and co-workers (4), and Rappoport and co-workers (5) ,  and 
we are indebted as well to an early review by Hart (6). 

Generation of Enols 
Simple enols such as vinyl alcohol, 1, can be formed readily from 

their keto isomers, 2, Eq. 1. 

The reaction, however, is reversible, and the position of equilibrium 
generally lies strongly on the keto side; the amount of en01 present 
at equilibrium is consequently seldom sufficient to permit direct 
observation, even by the most sensitive spectroscopic methods. 
Investigation of en01 chemistry therefore requires generation of the 
en01 in greater than the equilibrium amount in the medium of 
interest. We have developed a number of ways of accomplishing this 
in aqueous solution. 

We first made enols by hydrolysis of their alkali metal salts, Eq. 2, 

using solutions of these salts in aprotic solvents prepared by 
standard synthetic methodology (7). Addition of a small quantity of 
such a solution to a large amount of water resulted in a very fast 
oxygen-to-oxygen proton transfer and produced the en01 in an 
essentially wholly aqueous medium. Conversion of the en01 to its 
keto isomer then proceeded at a slower rate, which we could 
monitor accurately by following the marked change in the ultravi- 
olet spectrum that accompanies the ketonization reaction. 

This method of generating enols requires mixing two solutions 
and consequently cannot be applied to substances with lifetimes 
shorter than the mixing time. This limitation unfortunately excludes 
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