
dimer of the 57- and 30-kD polypeptides 
(Fig. 3B). The catalyuc properties of puri- 
fied component I were examined by 31P 
nuclear magnetic resonance and reversed- 
phase HPLC. In the presence of ~ 2 + ,  
CoA, and 4-CBA, component I catalyzes the 
cleavage of ATP to AMP and PP, coupled 
with the formation of the 4-HBA:CoA ad- 
duct (the partial reactions 1, 2, and 3 of 
Scheme 3). Catalysis of ATP cleavage (par- 
tial reaction 1, Scheme 3) did not occur in 
the absence of CoA. Component I, in com- 
bination with component 11, M 2 + ,  and 
CoA, gave complete conversion of 4-CBA 
and ATP to 4-HBA, AMP, and PP,. 

Component I1 was purified from the Pst 
I-Pst I-pT7.6 E. coli subclone (Fig. 1A). 
Fractionation of the 40 to 70% ammonium 
sulfate protein cut on a DEAE-cellulose 
column, followed by gel filtration on a cali- 
brated FPLC Superose 12 column, provided 
pure component I1 (Fig. 3B). Component 
I1 is a -65-kD protein (oc, tetramer) that 
catalvzes the hydrolysis of synthetic 4-HBA: , , 
C ~ A  thioester (26) to 4-HBA and &A. 

The 4-CBA dehalogenase activity is thus a 
sum of the activities of a 4-CBA:CoA ligase, 
a 4-CBA:CoA dehalogenase, and a 4-HBA: 
CoA thioesterase. We note the role that the 
dehalogenase sequence data played in the 
isolation of the active enzyme; even the 
short motif shown in Fig. 2 allowed us to 
infer the cosubstrate and cofactor for this 
reaction. We expect that, as protein se- 
quence databases expand, discoveries of this 
type could become routine and the charac- 
terization of new sequences could be facili- 
tated. 
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Regulatory Role of Parasites: Impact on Host 
Population Shifts with Resource Availability 

Effects of infections by the ciliate Lambornella clarki on larval populations of its 
mosquito host Aedes sierrensis were examined in laboratory and field studies. When 
host populations developed with s a c i e n t  food, mortality from parasites was additive 
and reduced the number of emerging mosquitoes. For food-limited populations, 
mortality was compensatory or depensatory; emerging adults were as or more 
abundant with higher average fitness than those from uninfected control populations. 
When nutrients were scarce, parasitic infections relaxed larval competition and 
increased per capita food by reducing host abundance. Food limitation altered larval 
feeding behavior, reducing horizontal transmission and subsequent mortality from 
parasitism. 

ESPITE THE WIDESPREAD OCCUR- 

rence of parasites and the diseases 
they cause, few quantitative data are 

available on how these organisms affect host 
abundance in nature (1). Assessing whether 
parasites regulate host populations is chal- 
lenging because their impact cannot be in- 
ferred from incidence rates alone and be- 
cause comparative evidence from infected 
and non-infected populations is extraordi- 
narily difficult to obtain; consequently, 
models describing the effects of parasites on 
host population dynamics have relied heavi- 
ly on laboratory studies (1). Theoretically, 
parasitism can result in a reduction, no 
change, or even an increase in host abun- 
dance; such host mortality effects are termed 

Department of Entomology, University of California, 
Berkeley, CA 94720. 

additive, compensatory, and depensatory, 
respectively. Determining the frequency and 
importance of these host population re- 
sponses in nature and their underlying 
mechanisms are critical and formidable tasks 
for both theoretical and applied ecologists 
(1). Moreover, understanding these mortal- 
ity patterns is crucial for implementing effec- 
tive biological control strategies. 

Despite these difficulties, by creating host 
and parasite populations in laboratory mi- 
crocosms and manipulated natural habitats, 
we have demonstrated that the impact of 
fatal infections by the parasitic protozoan, 
Lambornella clarki (Ciliophora: Tetrahy- 
menidae), inflicted on populations of its 
natural mosquito host, Aedes sierrensis 
(Diptera: Culicidae), changes with different 
resource regimes. Interactions between the 
effects of food limitation and parasitism as 
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Fig. 1. Numbers of surviving A. sierrensis in high- 
and low-density populations developing in the 
presence and absence of L. clarki infections. 
Points represent means (? 1 SEM) of 10 high- 
density or 12 low-density populations. Survivors 
include the cumulative number of pupae removed 
plus surviving larvae in each population. The 
average numbers of surviving mosquitoes in high- 
density populations with L. clarki were signifi- 
cantly lower than in control populations at 10 
weeks [ANOVA, F(1,22) = 6.38, P < 0.021 and 
15 weeks [ANOVA, F(1,22) = 14.68, P < 
0.001]. 
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regulating forces in host population dy- 
namics resulted in a shift from additive to  
compensatory or depensatory parasite 
mortality. The differential impact of para- 
sitism suggests that L. clarki modulates the 
outcome of intraspecific competition for 
food during the prolonged period of larval 
development. 

Lambomella clarki infects larvae ofA. siewen- 
sis in water-filled treeholes of western North 
America during the winter rainy season (2, 3). 
In nature, mosquito development is protracted 
and can require 7 months during which larval 
populations may experience mortality from 
both resource limitation (4, 5)  and multiple 
parasite cycles of L. clarki (6, 7). Shortly after 
treeholes accumulate rainwater, the first cycle 
begins when free-living trophont forms of L. 

Table 1. Winglengths of A. sierrensis adults that 
emerged from larval populations developing in 
the presence and absence of L. rlarki infections. 
Values are means (-+ 1 SEM) of 10 high- 
density or 12 low-density replicates; only 9 
high-density populations without parasites 
produced adult females. Data were analyzed by 
one-way ANOVA (P < 0.05). 

L. rlarki Winglength 
density (mm) 

Low 
Low 

Low 
Low 

High 
High 

High 
High 

Males 
2.54 2 0.08 0.97 
2.54 -+ 0.03 

Females 
3.06 2 0.10 0.23 
3.01 -+ 0.11 

Males 
2.31 2 0.07 <o,04 
2.40 2 0.09 

Females 
2.71 2 0.07 <o,02 
2.97 -+ 0.19 

clarki transform into host-seeking theronts that - 

attach to first instar larvae, penetrate the cuticle, 
and enter the hosts' hemocoels (6). Endopara- 
sitic ciliates multiply and produce infections 
that are fatal to hosts in about 3 to 4 weeks. 
Horizontal transmission results from trophonts 
that escape from moribund hosts, transform 
into theronts, and attack surviving larvae. Suc- 
cessful horizontal transmission is critical for L. 
clarki because, in addition to being hosts, A. 
siewensir larvae are also predators of L. clarki; all 
larval stages except newly hatched first imtars 
consume free-swimming ciliates during filter 
feeding (3) .  Although L. clarki epizootics elim- 
inate host populations in some treeholes, sea- 
sonal incidence levels in most habitats are low 
(7), and determining whether mortality from 
ciliate infections regulates A. sierrensis popula- 
tions is a complex problem. 

In laboratory microcosm studies with differ- 
ent host densities, we compared the dynamics 
of A. sierrmis larval populations that experi- 
enced L. clarki enzootics with those of control 
populations without parasites. Microcosms 
were maintained in an environmental chamber 
with natural photoperiod and temperature re- 
gimes that permitted fourth instar l a d  dia- 
pause and horizontal transmission of L. clarki 
(8) .  An initial population of either 100 (low 
density) or 500 (high density) first instar A. 
sierrensis was placed in each microcosm, and 
enzootics were established by the addition of 
small numbers of L. clarki (9). We censused 

\ , 
populations and added food to microcosms at 
5-week intervals; the total food added was the 
same for each microcosm and was sufficient for 
most individuals in low-density populations to 
successfully complete development but severely 
limiting for those at the higher density (10). 
Effects of parasitism were evaluated by compar- 
ing the n-ber, size, and infection status of 
emerged adult mosquitoes (1 1 ) . 

In this microcosm study, parasite enzootics 
at the two population densides had strikingly 
different effects on successll host develop- 
ment. For low-density populations, significant- 
ly fewer mosquitoes emerged from microcosms 
with L. clarki compared to controls [48 versus 
64%, ANOVA, F(1, 22) = 4.93, P < 0.031 
indicating that the major impact of the parasite 
was additive host mortality. In contrast, mor- 
tality from parasitism appeared to be compen- 
satory for high-density populations because 
there was no statistically sipficant difference 
in emergence success between treatment and 
control populations [6.1 versus 5.1%, 
ANOVA, F(1, 22) = 0.70, P = 0.411. HOW- 
ever, the average adult produced from high- 
density populations was sipficantly larger 
when parasites were present compared to con- 
trols, an effect we did not observe in low- 
density populations (Table 1). 

Since larger females produce more eggs 
per clutch and live longer in nature (4) ,  

females from high-density populations with 
L. clarki had a higher average fitness than 
those from controls. The mechanism for this 
shift to larger body size appears to be relax- 
ation of resource competition during larval 
development mediated by parasite-induced 
mortality. Adult mosquito size is a plastic 
phenotypic trait that is tightly correlated 
with larval food resources (12). Census data 
show that for several months during larval 
development, the average population size in 
high-density microcosms with parasites was 
lower than controls (Fig. 1). However, sur- 
vivorship curves later converged, resulting 
in comparable rates of adult emergence. 
Before nutrients became severely limiting, 
fatal L. clarki infections reduced host abun- 
dance during early development and ulti- 
mately increased the per capita food for 
surviving larvae which developed into adults 
that were almost as large as those from 
low-density populations. In high-density 
microcosms without parasites, population 
densities and resource competition re- 
mained high, resulting in the production of 
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Fig. 2. (A) Survivorship rates for L. rlarki tro- 
phonts introduced into microcosms with A. sier- 
rensis populations comprised of different larval 
stages. The same number of larvae was placed in 
each microcosm. Each point represents the mean 
trophont survivorship ( 2 1  SEM) for six replicat- 
ed microcosms. Trophont densities were deter- 
mined by thoroughly mixing the contents of each 
microcosm, removing and staining a 1.5-ml water 
sample, and counting the number of ciliates in a 
1.0-ml subsample. Trophont densities were divid- 
ed by the density at time = 0 to determine 
survivorship in each microcosm. (B) Survivorship 
of L. rlarki trophonts introduced into microcosms 
with larvae of A. sierrensis in the presence and 
absence of a substrate food source. Each point 
represents the mean trophont density (2 1 SEM) 
for six replicated microcosms, and densities were 
determined as above. 
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smaller adults. Within low-density popula- 
tions, adults from both treatment and con- 
trol microcosms were of similar size because 
food was much less limiting (Table 1). 

Infection rates in adult mosquitoes suggest 
that horizontal transmission of L. clarki was 
lower in high-density compared to low-den- 
sity populations. Infected adults are primarily 
produced from hosts initially parasitized as 
fourth instars (13), and 3.5 times as many 
adults had parasites in low-density than in 
high-density treatments [6.6 (n = 12) versus 
1.9% (n = lo)]. Additionally, microscopic 
examination of water samples after emergence 
was complete revealed L. clarki trophonts in 
50% of low-density microcosms but only 
20% of those from high-density treatments 
(14). Both observations suggest that in later 
stages of host development parasite incidence 
was lower in high-density populations. Simi- 
larly, in most natural treeholes both trophont 
density and percentage of infected hosts de- 
cline when high-density populations of late 
instar larvae are present (3, 7). 

Additional laboratory data suggest that 
larval predation reduced parasite incidence 
in the high-density microcosm populations. 
Aedes sierrensis larvae can feed by either 
browsing substrates or filtering water. When 
filter feeding, larvae consume free-swim- 
ming trophonts (3),  and ingestion rates pro- 
gressively increase for later instars (Fig. 2A). 
However, in the presence of solid food such 
as that provided in experimental micro- 
cosms, browsing predominates, and tro- 
phont populations persist at higher densities 
(Fig. 2B). Since trophonts that escape from 
cadavers require 48 to 72 hours for trans- 
formation into infective theronts, in the 
high-density experimental microcosms 
where food was severely limited, predation 
by late instar larvae would suppress popula- 
tions of free-swimming ciliates and reduce 
rates of horizontal transmission and levels of 
infection. For low-density populations in mi- 
crocosms having much more food per larva, 
filter feeding rates were presumably lower, cil- 
iates survived longer, and rates of transmission 
were higher. These results suggest that the 
impact of L. clarki on host population dynam- 
ics in microcosms was sipticantly modulated 
by resource availability, intraspeciiic competi- 
tion, and host feeding behavior. 

To determine whether similar factors af- 
fect the impact of L. clarki on host popula- 
tions in nature, we compared the produc- 
tion of adult A. sierrensis from parasitized 
and unparasitized larval populations devel- 
oping in natural treeholes. In these natural 
breeding sites, organic detritus, microbial 
films on leaf litter and decaying wood, and 
microorganisms in the water column pro- 
vide larvae with food (15). Because it was not 
possible to directly measure or control these 

resources in individual treeholes, we chose a 
broad range of treehole sizes for manipulations. 
In doing so, we assumed that small holes 
should contain fewer nutrient resources than 
large holes; hence, numerically identical larval 
populations would be more resource-limited in 
small holes than in large ones. These assump- 
tions are reasonable because treehole size alone 
explains 52% of the variance in numbers of 
adult mosquitoes emerging from natural tree- 
holes (5 ) .  

We first eliminated the biological commu- 
nities from 42 treeholes that ranged in max- 
imum volume from 0.6 to 21.1 liters. Tree- 

Fig. 3. Painvise comparison of the differences 
between emergence success of A simrrensk popu- 

- 
lations developing in natural treeholes with and ,U L. claMnegative 
without enzootics of L. clarki. Each bar represents Q 25. 
the difference in survivorship between a control E hole and its paired L. clarki positive hole. Bars a, 

above the line indicate greater survivorship of 5 0 
control populations whereas bars below the line 2 
indcate greater survivorship of populations with 25 - 
L. clarki. Results from ten treehole pairs ranked 

holes were filled completely with water and 
boiled to kill the resident aquatic organisms 
(16). Communities in each habitat were 
restructured by the addition of 1050 or 
2050 newly hatched A. sierrensis larvae, live 
or killed L. clarki trophonts, and a culture of 

by increasing maximum volume (0.7 to 21.1 

microorganisms that are normal faunal ele- 
ments of water-filled treeholes in California. 
Holes of similar volume were designated as 
treatment or control and manipulated at the 

L. c~arg positive 

same time; paired communities were recon- 
structed with the same number and source of 
hosts and the same parasite cultures (17). After 

liters) are shown; the impact of parasitism shifted 8 50 
to reduced host emergence in treeholes with B Increasing rnax'rnurn treehole 

maximum volumes greater than 3 liters. Both 
treeholes within pairs were manipulated on the same date and received the same number of first instar 
larvae (either 1050 or 2050). Populations with ciliate epizootics were not included; only populations 
with enzootic levels in larval samples (mean = 9.2 2 4.3% incidence, n = 10) were used for painvise 
comparisons. Treeholes in the L. clarki-positive treatment group include both holes with natural L. 
clarki (n = 4)  and holes inoculated with live trophonts (n = 6). For cases (n = 4)  where painvise 
comparisons could be made between control and either of two treatment treeholes, we always chose 
treatment holes with volumes most similar to controls. This selection did not bias results because in al l  
four cases, the treatment populations that we did not choose responded the same, relative to controls, 
as those shown. 

1 week, we sampled 50 larvae from each tree- 
hole and examined them microscopically for L. 
clarki infections. After sampling, experimental 
holes were left undisturbed for the duration of 
larval development (3 months) (18). A trap 
designed to retain emerging adult mosquitoes 
was placed over each hole when pupation 
commenced, and adults were removed twice 
weekly throughout the emergence period (4 
months). 

Examination of larval samples and dissec- 
tion of adult mosquitoes revealed ciliate 
infections in only 18 of the 28 experimental 
treehole populations inoculated with live L. 
clarki. The average survivorship to adult- 
hood for these populations with parasites 

was 28.5 ? 5.3% (mean ? 1 SEM; n = 18; 
range, 0.06 to 65.9%) compared to 41.0 ? 

6.1% (n = 14; range, 1.1 to 68.0%) for 
controls; additionally, 4.6% of the adults 
from L. clarki-positive holes were infected 
females, which neither seek blood meals nor 
reproduce (13). Thus, the overall impact of 
parasite mortality on host populations from 
all treeholes was additive (19). Nonetheless, 
the effect of L. clarki enzootics on rates of 
adult emergence from individual habitats 
shifted over the size range of manipulated 
treeholes as predicted by the microcosm 

lncreaslng rnaxlmum treehole volume 
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Fig. 4. Painvise comparison of differences in 
average winglength measurements of male and 
female A. sierrensis adults that emerged from 
populations developing in natural treeholes with 
and without enzootics of L. clarki. Bars extend in 
the direction of the treehole in each pair that 
produced larger adults (see Fig. 3 legend). Aver- 
age winglengths within each pair were compared 
by a t test (P < 0.05); a l l  means are significantly 
different except those indicated by ns. 
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study. In the smallest treeholes where larval 
densities were highest, survivorship to adult- 
hood in populations with ciliate infections was 
greater than for paired control populations 
without parasites; in larger holes where larval 
densities were lower, survivorship was greater 
for control populations without ciliate infec- 
tions (20) (Fig. 3). Similarly, adults of both 
sexes that emerged from the four smallest tree- 
holes with parasites were sipficantly larger 
than adults from corresponding control holes, 
whereas no trends in adult size were detected in 
comparisons of larger holes (Fig. 4). These 
results show that the impact of L. clarki infec- 
tions on host mortality was depensatory in the 
smallest treeholes (where food was likely to be 
most limiting) and additive in large holes 
(where food was likely to be more abundant). 

Data from these laboratory and field studies 
clearly show that although parasites can regu- 
late host population levels, the effect of parasitic 
infections is not always a reduction in host 
abundance. Overall, 30.1% fewer mosquitoes 
emerged from manipulated treeholes with L. 
clarki (n = 18) compared to controls without 
parasites (n = 14). Because the infection levels 
of experimental populations were similar to 
those in natural treehole populations, our data 
suggest that even low average infection levels of 
L. clarki substantially reduce A. sierrensis abun- 
dance. However, the regulatory role ofL. clarki 
is modified by availability of food, competition 
among larvae, and changes in feeding behavior. 
Under certain conditions (for example, re- 
source limitation), natural enemies such as L. 
clarki may actually increase the fimess of adult 
mosquitoes by allowing for more or larger 
individuals, or both, to complete development. 
Because size and longevity are positively corre- 
lated, such mosquitoes possess a greater poten- 
tial for com-pleting multiple gonotrophic cy- 
cles and serving as vectors for vertebrate 
diseases (21). Our results suggest that effective 
deployment of biological control agents is de- 
pendent on carell consideration of other eco- 
logical factors that aEect target pest popula- 
tions. 
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